ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  2. IEEE Transactions on Artificial Intelligence

Mixture Density Function Estimation in Shape Clustering

https://hiroshima-cu.repo.nii.ac.jp/records/2000259
https://hiroshima-cu.repo.nii.ac.jp/records/2000259
1140dab0-47eb-4a2d-9bbc-fa02c254defd
名前 / ファイル ライセンス アクション
TAI3543815.pdf TAI3543815.pdf (674.4 KB)
Item type デフォルトアイテムタイプ(シンプル)(1)
公開日 2025-10-27
タイトル
タイトル Mixture Density Function Estimation in Shape Clustering
言語 en
作成者 岩田, 一貴

× 岩田, 一貴

en IWATA, Kazunori

ja 岩田, 一貴

Search repository
権利情報
権利情報 © 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
主題
主題Scheme Other
主題 Clustering
主題
主題Scheme Other
主題 Expectation–maximization algorithm
主題
主題Scheme Other
主題 Maximum likelihood estimation
主題
主題Scheme Other
主題 Mixture density function
内容記述
内容記述タイプ Abstract
内容記述 Recent developments in measurement tools have made it easier to obtain shape data, a collection of point coordinates in vector space that are meaningful when some of them are gathered together. As a result, clustering of shape data becomes increasingly important. However, few studies still perform applicable clustering in various cases because some studies rely on their specific shape representations. Thus, we apply a simple and widely recognized representation and generative model to shape. A configuration matrix of the point coordinates is used for the representation, and it is the simplest and most well-accepted representation in conventional shape analysis. As a generative model, we consider the mixture density function, a well-known model in statistics for expressing a population density function, which is a linear combination of subpopulation density functions.
The aim of this paper is to present a mixture density-based model that will be useful for clustering shape data. The clustering of shapes involves estimating the parameters of the model, and this estimation is derived using an EM algorithm based on the model. As examples of promising shape-data applications, the computational analyses of ape skulls, American football formations, and baseball pitches were performed. In addition, we evaluated the performance of the EM algorithm by comparing it with other typical clustering methods. The theoretical results not only contribute to statistical estimation for shape data but also extend the clustering of non-vector shape data. The experimental results show that the derived EM algorithm performs well in shape clustering.
言語 en
出版者
出版者 IEEE
言語
言語 eng
資源タイプ
資源タイプ識別子(シンプル) http://purl.org/coar/resource_type/c_6501
資源タイプ(シンプル) journal article
出版タイプ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
関連情報
識別子タイプ DOI
関連識別子 https://doi.org/10.1109/TAI.2025.3543815
書誌情報 en : IEEE Transactions on Artificial Intelligence

巻 6, 号 8, p. 2178-2192, ページ数 15, 発行日 2025-02-20
戻る
0
views
See details
Views

Versions

Ver.1 2025-10-28 08:52:05.972073
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3