ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  2. Pattern Recognition

Making clustering methods workable for shapes using the ordinary Procrustes sum of squares

https://hiroshima-cu.repo.nii.ac.jp/records/2000258
https://hiroshima-cu.repo.nii.ac.jp/records/2000258
272300db-8e22-4202-a847-61ae56cfb886
名前 / ファイル ライセンス アクション
PR169_11878.pdf PR169_11878.pdf (2.0 MB)
Item type デフォルトアイテムタイプ(シンプル)(1)
公開日 2025-10-24
タイトル
タイトル Making clustering methods workable for shapes using the ordinary Procrustes sum of squares
言語 en
作成者 岩田, 一貴

× 岩田, 一貴

en IWATA, Kazunori

ja 岩田, 一貴

Search repository
呑谷, 祐輝

× 呑谷, 祐輝

en NONTANI, Yuki

ja 呑谷, 祐輝

Search repository
三村, 和史

× 三村, 和史

en MIMURA, Kazushi

ja 三村, 和史

Search repository
権利情報
権利情報 © 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
主題
主題Scheme Other
主題 Ordinary Procrustes sum of squares
主題
主題Scheme Other
主題 K-means clustering
主題
主題Scheme Other
主題 Fuzzy c-means clustering
主題
主題Scheme Other
主題 Spectral clustering
主題
主題Scheme Other
主題 Mean shift clustering
主題
主題Scheme Other
主題 Convex clustering
内容記述
内容記述タイプ Abstract
内容記述 In the last few decades, a number of clustering methods for vectorial data have matured. Occasionally, researchers are interested in making them workable for data of other types, such as an object’s shape. The current difficulty in applying them to shape clustering is that clustering must be invariant to several similarity transformations of shapes. Therefore, we use the ordinary Procrustes sum of squares (OSS) in Procrustes analysis, which refers to analysis that is invariant to the similarity transformations between shapes. Thus, in this study, we aim to make mature methods workable in shape clustering. To achieve this, the essential points that we need to address are to rewrite the optimization problem associated with each method and to present a feasible method for computing the solution to the problem. As a result, we base the method on the OSS, its derivative, or a symmetric matrix concerning the OSS. Another aim of this study is to identify specific applications of shape clustering. We demonstrate the applications through experiments using datasets that contain skewed line drawings, American football formations, and baseball pitch trajectories. We examine the OSS-based methods by considering shape classification and determining the best method for implementing the OSS. As a result, regardless of the dataset, we demonstrate that the OSS in every method is more effective than other shape distances and that the convex clustering method incorporating the OSS is best performed in several ways.
言語 en
出版者
出版者 Elsevier B.V.
言語
言語 eng
資源タイプ
資源タイプ識別子(シンプル) http://purl.org/coar/resource_type/c_6501
資源タイプ(シンプル) journal article
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
関連情報
識別子タイプ DOI
関連識別子 https://doi.org/10.1016/j.patcog.2025.111878
書誌情報 en : Pattern Recognition

巻 169, p. 111878-none, ページ数 10, 発行日 2025-06-16
戻る
0
views
See details
Views

Versions

Ver.1 2025-10-24 05:42:08.236759
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3