ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  2. IEICE Transactions on Information and Systems

Revisiting a Nearest Neighbor Method for Shape Classification

https://hiroshima-cu.repo.nii.ac.jp/records/1821
https://hiroshima-cu.repo.nii.ac.jp/records/1821
bc6e4254-cd82-4219-8389-f54cf8cd280a
名前 / ファイル ライセンス アクション
e103-d_12_2649.pdf e103-d_12_2649.pdf (608.4 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2023-03-07
タイトル
タイトル Revisiting a Nearest Neighbor Method for Shape Classification
言語
言語 eng
キーワード
主題 shape classification
キーワード
主題 ordinary Procrustes sum of squares
キーワード
主題 nearest neighbor method
キーワード
主題 discriminant adaptive nearest neighbor method
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 IWATA, Kazunori

× IWATA, Kazunori

IWATA, Kazunori

ja-Kana イワタ, カズノリ

Search repository
岩田, 一貴

× 岩田, 一貴

en 岩田, 一貴

Search repository
抄録
内容記述タイプ Abstract
内容記述 The nearest neighbor method is a simple and flexiblescheme for the classification of data points in a vector space. It predictsa class label of an unseen data point using a majority rule for the labels ofknown data points inside a neighborhood of the unseen data point. Becauseit sometimes achieves good performance even for complicated problems,several derivatives of it have been studied. Among them, the discriminantadaptive nearest neighbor method is particularly worth revisiting to demon-strate its application. The main idea of this method is to adjust the neigh-bor metric of an unseen data point to the set of known data points beforelabel prediction. It often improves the prediction, provided the neighbormetric is adjusted well. For statistical shape analysis, shape classificationattracts attention because it is a vital topic in shape analysis. However, be-cause a shape is generally expressed as a matrix, it is non-trivial to applythe discriminant adaptive nearest neighbor method to shape classification.Thus, in this study, we develop the discriminant adaptive nearest neighbormethod to make it slightly more useful in shape classification. To achievethis development, a mixture model and optimization algorithm for shapeclustering are incorporated into the method. Furthermore, we describe sev-eral helpful techniques for the initial guess of the model parameters in theoptimization algorithm. Using several shape datasets, we demonstrated thatour method is successful for shape classification.
書誌情報 IEICE Transactions on Information and Systems

巻 E103-D, 号 12, p. 2649-2658, 発行日 2020-12-01
出版者
出版者 電子情報通信学会
ISSN
収録物識別子タイプ ISSN
収録物識別子 09168532|17451361
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA10826272|AA11226532|AA11510321
DOI
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 info:doi/https://doi.org/10.1587/transinf.2020EDP7074
権利
権利情報 Copyright©2020 The Institute of Electronics, Information and Communication Engineers
関連サイト
識別子タイプ URI
関連識別子 https://search.ieice.org/
関連名称 https://search.ieice.org/
他の資源との関係
関連名称 https://search.ieice.org/bin/summary.php?id=e103-d_12_2649&category=D&year=2020&lang=E&abst=
フォーマット
内容記述タイプ Other
内容記述 application/pdf
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-25 10:42:42.948178
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3