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Abstract

This research investigates how active and nonlinear mechanisms generate nonlinear
phenomena in the cochlea using a computational model.

The cochlea acts as a frequency analyzer in the human auditory system. This
process is realized by active and nonlinear cochlear mechanics. Improving our
understanding of the cochlear mechanics requires us to investigate our hearing
system. Experimental research can directly explain mechanics; however, cochlear
mechanics cannot currently be accurately measured because the cochlear structure
is fine and elaborate. Instead of an experimental approach, modeling studies have
the potential to uncover cochlear mechanics, especially if they can be described by
basic physical principles. Moreover, active and nonlinear systems like these have
been previously analyzed in many science and engineering fields.

Typical cochlear nonlinearities include compression, two-tone suppression (2TS)
and distortion product. The first nonlinearity involves nonlinear growth in a
cochlear IO function, the second nonlinearity is the reduction in cochlear response
for a tone when another tone is presented, and the third nonlinearity is the gener-
ation of a cochlear response for absent tones where multiple tones are presented.
This thesis focuses on the above three cochlear nonlinearities.

To investigate the mechanisms of these cochlear nonlinearities, a transmission
line model including an active and nonlinear element was developed. The transmis-
sion line model is described by basic physical principles. The active and nonlinear
element is inspired from isolated outer hair cell (OHC) findings.

The nonlinear responses obtained from the transmission line model can account
for the experimental measurements, and is generated by the active and nonlinear
OHC model, which is the only active and nonlinear element in the cochlear model.
Consequently, the analysis of the OHC model is key to understanding the cochlear
nonlinearities. The results of the analysis of the OHC model also show similar
properties to those of the cochlear model. Therefore, it is suggested that the
active and nonlinear OHC mechanisms generate these nonlinearities in the cochlear
mechanics.
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Chapter 1

Introduction

In recent years, with an increase in computer processing capacity, computers have

rapidly become ubiquitous in many areas of human endeavor. In humans, our per-

ception of hearing is instant and easy; however, the tasks that we take for granted

are difficult for a computer. For optimal computer performance, an approach based

on a combination of psychoacoustics and speech perception creates a high quality

speech synthesis system, and a statistical approach to speech data produces an

excellent automatic speech recognition system. However, these systems focus on

speech sounds, and processing these sounds is complicated.

We hear many kinds of sounds, not only speech sounds, in the natural envi-

ronment. Moreover, our hearing is part of human activity. For that reason, this

thesis considers that our hearing system understands sound using a few underlying

rules. Given this, what are the key elements of these underlying rules?

This thesis focuses on a bottom-up approach to understanding our hearing.

Hearing processing consists of hearing organs and the brain. Sound waves pass the

hearing organs with mechanical vibrations, and the brain processes sound informa-

tion using neural codes. The cochlea performs the role of converting sound waves

into neural firing. Hence, one function of the cochlea in hearing is time–frequency

analysis. Hydro and mechanical dynamics realize the decomposition of incoming

sound waves to frequency information, and electrophysiological dynamics convert

mechanical information into neural information in the cochlea. The cochlea’s me-

chanical dynamics in particular are well known to be nonlinear. Furthermore,

the results of cochlear processing cannot be predicted easily. Direct measurement

of mechanical dynamics in the cochlea is the most effective way to understand

cochlear function, but it is difficult to measure the total mechanical response from

a structure that is both complicated and sensitive to surgical injuries.
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The mechanisms of the cochlea are still wrapped in mystery. From the point of

view of computer science, the cochlea can be considered to be an active and non-

linear system. Thus, computational modeling studies, rather than direct measure-

ments, have the potential to unveil the underlying active and nonlinear cochlear

mechanisms.

1.1 Cochlear mechanics

The fundamental parameters of sound are amplitude, frequency and phase, which

vary across time. This information is processed during hearing for the perception

and recognition of sound. Our hearing can perceive an amplitude range of 120 dB,

from 20 μPa to 20 Pa of sound pressure level, and a frequency range of 20 Hz to 20

kHz. These ranges for sound pressure level and frequency indicate great abilities.

The cochlea plays the important role of frequency analysis in this process. Also,

Fourier transform is well known as a frequency analysis method and is commonly

used in many scenes. However, before the proposal of Fourier transform, our

hearing had realized the frequency analysis by the cochlea.

The cochlea’s structure takes the form of a coiled tube filled with fluid. The

basilar membrane (BM) divides the cochlear tube into two rooms, and is lined

with sensor cells. The incoming sound wave vibrates the BM mechanically; the

patterns of this BM vibration depend on the sound frequency. For lower frequency

sounds, the BM vibration occurs at the entrance of the cochlea. In contrast,

the BM vibration is generated at the apex of the cochlea for higher frequency

sounds. This idea was proposed by Helmholtz in the late 19th century [1], and

half a century later, von Békésy observed the frequency dependence of the BM’s

mechanical vibration in cadavers, and discovered the cochlea’s frequency analysis

mechanism [2]. In addition, his observation pointed out a unique vibration that

is well known as the traveling wave. The pattern of the traveling wave in the BM

moves from the entrance to the apex, and its amplitude is at a maximum at the

resonance point. However, the tuning of the BM resonance is lower than that of

the auditory nerve (AN) firing that results from the sensor cells’ processing on the

BM (e.g., Ref. [3]). In the 1980s, BM vibrations were observed in living animals

and showed similarly shaped tuning properties of AN firing and higher amplitudes

of BM vibration than those in the dead cochlea [4]. More recently, BM and AN

in the same cochlea were found to have equivalent frequency tuning properties [5].
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Consequently, the question arises as to how the living cochlea produces the sharp

frequency tuning and the high amplitude of the BM response.

Many investigators have commonly believed that active mechanisms underlie

the cochlear mechanics to produce the sharp frequency tuning and the high am-

plitude of the BM response. This active mechanisms idea is supported by isolated

cell experiments in vivo. In these experiments, the outer hair cell (OHC) sensor

cell showed active motion toggled by stimuli to the cell. The shape of the OHC

consists of a cell body and sensory hairs called the hair bundle. The intracellular

potential of the cell body is 70 mV in a resting state, and varies with the hair

bundle displacement. This variation depends on whether mechanical channels reg-

ulating the ionic flow at the apex of the hair bundle are open or closed by the hair

bundle displacement, and the variation of ionic flow causes the variation of the

intracellular potential of the cell body. This phenomenon indicates that the OHC

transforms mechanical BM motion into electronic motion. Furthermore, the length

of the OHC’s cell body is changed by intracellular potential [6, 7], a phenomenon

that is called somatic motility. After the discovery of somatic motility, it was

thought to boost the BM motion in a cycle-by-cycle action (e.g., Ref. [8]). When

the 21th century came over, the somatic motility disappeared mice was proposed,

and showed the sharp frequency tuning and the higher amplitude of BM motion

[9]. Further, another active OHC motion called the hair bundle motility has also

been observed in vivo [10]. This motility consists of the force generation of the

hair bundle mechanisms toggled by its displacement; it is possible that the force

generated by the hair bundle mechanisms produces the sharp frequency tuning

and the higher amplitude of BM motion [11]. Both of the somatic and hair bundle

mechanisms have advantages and disadvantages; however, recent work shows that

both are necessary for the cochlear mechanism [12]. As a direct consequence of

these experimental results, the cochlear mechanics in living hearing are thought

to be active.

The function of the active mechanisms is not only the generation of the sharp

frequency tuning and the higher amplitude of BM motion. It is commonly be-

lieved that the active process is a source of nonlinearities in the cochlear mechan-

ics. Understanding these nonlinearities is useful to clarify our understanding of

the cochlea, because nonlinearity causes difficulties in detection systems. Three

typical cochlear nonlinearities are observed in BM motion, AN firing, cochlear

monophonic, oto-acoustic emission (OAE), and psychological measurements.
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• Compression

The cochlear input–output (IO) function shows a nonlinear curve. At lower

and higher input levels, the IO curve grows linearly. At a moderate input

level, the slope of the IO curve is less than 1 dB/dB. This nonlinear growth is

called compression. In BM motion, the degree of compression is lower than

0.2 dB/dB at a characteristic frequency (CF) that is the most sensitive fre-

quency at a longitudinal location of the cochlea and becomes linear when the

sound frequency is well above the CF [13, 14]. Psychological measurements

show similar IO curves; however, they have a lower degree of compression

over 0.4 dB/dB [15].

• Two-tone suppression

BM motion for a tone is reduced when a stronger tone is inputted. This re-

duction is called two-tone suppression (2TS). The dominant and suppressed

tones are called the suppressor and probe, respectively. This 2TS phe-

nomenon, first observed in the AN half a century ago [16], has also been

detected in the BM [17] and the inner hair cells (IHCs) [18] within the past

two decades. Ref. [17] concluded that 2TS originates from mechanical phe-

nomena at the BM and is generated by active processes.

• Distortion product

Distortion products (DPs) are a response to an absent tone after a two-tone

pair is transmitted to the hearing apparatus. This phenomenon was observed

50 years ago in the AN [19], in OAEs [20], and on the BM [21, 22].

The somatic motility disappeared mice did not show the cochlear nonlineari-

ties [9, 23, 24, 25]. The reason for this is that the active processes of the OHCs,

alongside the hair bundle mechanisms, are related to the cochlear nonlinearities.

However, it is still unclear how the active processes generate the cochlear nonlin-

earities. This result has led to the obstruction of understanding in hearing studies.

1.2 Cochlear modeling

An alternative method to experimental studies is the use of modeling studies, as

experiments can run into technical difficulties; however, this is not the only reason

to use them. Modeling studies have the potential to clarify common mechanisms

in some phenomena and to explain mechanisms without noise.
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Current cochlear models can be categorized as either transmission line models

or phenomenological models. The former describe the mechanical dynamics in the

cochlea, while the latter focus on the cochlear IO properties. Cochlear modelers

choose either a transmission line model or a phenomenological model, depending

on their study.

Transmission line model

After Békésy’s discovery, hydrodynamics in the theoretical treatment of cochlear

sound propagation became an important way to explain the BM vibration pattern

known as the traveling wave. In the transmission line model, the cochlea is con-

sidered to be an uncoiled duct structure with two fluid-filled compartments whose

walls, separated by the BM, are rigid [26, 27]. By applying fundamental physical

principles, the basic equations for the transmission line model are obtained and

can be illustrated by an equivalent electrical circuit. This passive model can well

reproduce the BM traveling wave obtained from the dead cochlea.

To produce the sharp frequency tuning and higher amplitude of BM motion in

the living cochlea, the simplest way is to increase the Q factor at each BM location.

This higher Q factor can reproduce the amplitude of BM motion. However, the

frequency tuning property generated by this higher Q factor is sharper than the

results obtained from the experimental measurements. To solve this problem,

active models were proposed [28, 29, 30]. In those models, active elements at base

of the peak of the BM traveling wave boost BM vibration, and produce sharper

frequency tuning and higher amplitude of BM motion.

These active elements are necessary for explaining living cochlear mechanics.

Also, the cochlear nonlinearities could be accounted for by nonlinear transmission

line models [31, 32, 33, 34, 35, 36, 37]. These models incorporate a nonlinear

element that is also active. The basic idea behind the nonlinear mechanisms in

the models is that the active and nonlinear element boosts BM motion at a lower

sound pressure level, and this amplification is saturated over a moderate sound

pressure level.

Phenomenological model

Békésy’s discovery inspired the phenomenological modeling of the cochlea. The

most successive phenomenological concept is a bandpass filter bank that represents

cochlear processing [38]. This filter bank concept is based on the fact that the
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resonance of the BM depends on the CF. The width of the bandpass filter is

decided by the frequency tuning properties of the BM, and is calculated from

psychological measurements.

Active and nonlinear phenomenological models of the cochlea have been pro-

posed to account for the cochlear nonlinearities [39, 40]. These models are designed

using digital signal processing. The basic idea of the nonlinear filter bank model is

to vary the shape of the bandpass filter with sound pressure level. At lower sound

pressure levels, the width of the bandpass filter is the shaper. Over a moderate

sound pressure level, the width of the bandpass filter becomes broader depending

on the sound pressure level. Moreover, the value of the gain factor in the model is

reduced by increasing the sound pressure level.

1.3 Research objectives

The aim of this thesis is to improve our understanding of the nonlinearities in the

cochlear mechanics using a modeling study.

As already mentioned, the cochlea analyzes the frequency of the sound before

the human brain perceives it. This analysis can process various sounds, from soft to

loud and from low-pitched to high-pitched. Furthermore, the active and nonlinear

processes in the cochlea produce this analysis in an elaborate way. Isolated cell

experiments have shown active and nonlinear processes in the OHC; however, a

gap exists between the isolated OHC findings and the actual cochlear mechanics.

This thesis concentrates on using a model to investigate how the active and

nonlinear processes generate the cochlear nonlinearities. To do this, we propose

a one-dimensional transmission line model of the cochlea, including an active and

nonlinear element inspired from the isolated OHC findings. This work is motivated

by the fact that the transmission line model should be derived from fundamen-

tal physical principles. Consequently, results obtained from the transmission line

model can account for the cochlear mechanics. In this thesis, we focus on three

typical cochlear nonlinearities: compression, two-tone suppression (2TS) and DP.

1.4 Organization of the thesis

This thesis consists of seven chapters. A schematic overview of this thesis is

presented in Fig. 1.1.
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Chapter 1 Introduction

Chapter 2 Overview of cochlear mechanics and modelings

Chapter 3 Proposing an active and nonlinear model of the cochlea

Chapter 4, 5 and 6 Investigating mechanisms of cochlear nonlinearities

Chapter 4 Compression

Chapter 5 Two-tone suppression

Chapter 6 Distortion product

Chapter 7 Conclusion

Figure 1.1: Thesis construction

• Chapter 2 starts with the description of the peripheral auditory system

consisting of the outer ear, the middle ear and the cochlea. The description

is divided into two parts: structures and responses.

• Chapter 3 proposes a transmission line model of the cochlea, including an

active and nonlinear element.

• Chapter 4, 5, and 6 investigate the mechanisms of compression, two-tone

suppression and DP, respectively, within the active and nonlinear transmis-

sion line model of the cochlea.

• Chapter 7 summarizes this thesis and suggests further studies.
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Chapter 2

Overview of cochlear mechanics

The human hearing system consists of the outer, middle and inner ear. The cochlea

is included in the inner ear. First, sound waves propagating in the external field

are collected by the outer ear. Then, the collected sound is carried into the cochlea

by the middle ear, which matches the impedance between the air and the cochlear

fluid. If the impedance is not matched, then the cochlea reflects sound waves

back to the outer ear. Finally, the inputted sound wave is transformed into neural

firing by the cochlea. Auditory perception and cognition are based on this neural

information in our brain.

This chapter provides an overview of the cochlear mechanics. As the path

through which sound travels, the outer and middle ear have important roles. In

Section 2.1, some anatomical and physiological features are introduced. To under-

stand the basics of cochlear mechanics, Section 2.2 introduces anatomical features

of the cochlea. In Section 2.3, mechanical and neural features of the cochlea are

introduced. Furthermore, some psychological experimental results that might de-

scribe these features are outlined. Section 2.4 introduces psychological findings

related to cochlear function.

2.1 Anatomy and function of outer and middle

ear

Figure 2.1 shows the periphery of the human ear. The auditory periphery consists

of the outer, middle and inner ear. The incoming sound travels through the pinna,

concha, ear canal and eardrum, and the resonance of the concha and ear canal

produce the sound pressure at the eardrum. The complex structure of the pinna

provides directionality cues to aid in sound localization.
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Figure 2.1: The external, middle and inner ears in humans. From Pickles [41],
Fig. 2.1.

The middle ear couples sound energy from the ear canal to the cochlea, and

by its transformer action helps to match the impedance of the ear canal to the

much higher impedance of the cochlear fluids. In the absence of a transformer

mechanisms, much of the sound would be reflected. The middle ear consists of a

chain of three small bones: the malleus, the incus and the stapes, shown in Fig.

2.1. The first two bones are joined comparatively rigidly so that when the tip of

the malleus is pushed by the tympanic membrane, the bones rotate together and

transfer the force to the stapes. The stapes is attached to a flexible window in the

wall of the cochlea, known as the oval window.
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Figure 2.2: Cross section of the cochlea. From Slepecky [42], Fig. 2.1. SV: Scala
vestibuli, SM: Scala media, ST: Scala tympani and Mo: MODIOLUS

2.2 Structure of cochlea

The structure of the cochlea is a coiled tube. The width of the human cochlea is

about 10 mm, and its height is about 5 mm. Figure 2.2 displays a cross section

of the coiled cochlea to show detail of the cochlea’s turns and the three cochlear

rooms: the upper, middle and lower rooms are called the scala vestibuli, the scala

media, and the scala tympani, respectively. The scala vestibuli and the scala media

are divided by Reissner’s membrane, and the scala media and the scala tympani

are divided by the BM, which is 35 mm in length. The scala vestibuli and the

scala tympani are connected at the apex of the cochlea.

The sound transmitted via the middle ear vibrates the oval window connecting

to the scala vestibuli at the entrance of the cochlea and generates a pressure

difference between the scala vestibuli and the scala tympani. The width of the

BM varies with longitudinal direction: it is narrower at the cochlear base and
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Figure 2.3: Cross section of the organ of Corti. From Pickles [41], Fig. 3.1(D).

broader at the cochlear apex. This variation is caused by the gradual distribution

of the BM natural frequency.

The organ of Corti consists of sensor cells (called hair cells), ANs, and sup-

porting cells, as shown in Fig. 2.3. The hair cells are divided into the IHCs and

the OHCs, which are located on one and three rows, respectively. The organ of

Corti is covered by the tectorial membrane (TM). The apices of the OHCs are

attached to the TM; however, the apices of the IHCs are not attached to the TM.

Shared motion of the TM directly affects the OHCs. It is considered that IHCs

are affected by fluid injection when shared motion of the TM is generated.

2.3 Response of cochlea

The sound transmitted via the middle ear strikes the oval window at the entrance

of the cochlea, as shown in Fig. 2.4 (top). This vibration causes the vibration

of cochlear fluid and the BM. As a result, a vibration called the BM traveling

wave propagates from the base to the apex of the cochlea. The peak of the BM

traveling wave depends on the sound frequency, as shown in Fig. 2.4 (middle).
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Figure 2.4: Schematic illustration of the uncoiled cochlear tube (top), amplitude
and phase of BM vibration for a frequency (middle and bottom), respectively.

After reaching the peak, the BM traveling wave decays rapidly. The phase is

delayed from the base to the apex, as shown in Fig. 2.4 (bottom).
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Chapter 3

Active and nonlinear cochlear
model

3.1 Introduction

This chapter proposes an active and nonlinear cochlear model that is a one-

dimensional transmission line model with feedback from an active process. Previ-

ously, Neely and Kim proposed an active and linear transmission line model of the

cochlea. Here, we expand this linear model into a nonlinear model. In Section 3.2,

we propose an active transmission line model that is described by both mechanical

and electroacoustic representation. In Section 3.3, we propose an OHC model as

an active and nonlinear element in the transmission line model of the cochlea. In

Section 3.4, we estimate parameter values to mimic the dynamics of the human

cochlea. In Section 3.5, we introduce a numerical method to solve the model. In

Section 3.6, we summarize this chapter.

3.2 Transmission line model

3.2.1 Mechanical representation

The transmission line simulates the driving of the BM traveling wave by fluid

dynamics. In the one-dimensional transmission line model, the traveling wave

propagates in the x-plane from the stapes to the helicotrema. Pd is the pressure

difference between the upper and lower scales of a box divided into compartments

by the cochlear BM. Pd drives the BM displacement ξb. The macromechanical

equation of the transmission line model is

∂2Pd(x, t)

∂x2
=

2ρ

H

∂2ξb(x, t)

∂t2
, (3.1)
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Figure 3.1: Micromechanical model of the cochlea

where ρ and H are the fluid density and scale width, respectively. The boundary

conditions at the basal and apical ends of the cochlea are given by

∂Pd(x, t)

∂x

∣∣∣∣
x=0

= 2ρξ̈s(t), Pd(x, t)|x=l = 0 (3.2)

where ξs represents the inward displacement of the stapes footplate, and the

double-dot notation denotes the second time derivative.

To produce the sharp tuning observed in the cat’s AN, the BM and TM were

represented by the micromechanical model shown in Fig. 3.1. Denoting the

pressure by F(x, t) = (Pd(x, t) − Pa(x, t), 0)
T and the displacement by ξ(x, t) =

(ξb(x, t), ξt(x, t))
T , the equations of motion of the micromechanical model are given

by

F = Mp
∂2ξ(x, t)

∂2t
+Cp

∂ξ(x, t)

∂t
+Kpξ(x, t) (3.3)

where

Mp =

(
m1 0
0 m2

)
, Cp =

(
c1 + c3 −c3
−c3 c2 + c3

)
, Kp =

(
k1 + k3 −k3
−k3 k2 + k3

)
.(3.4)

The initial conditions are given by

ξ(x, t)|t=0 = 0,
∂ξ(x, t)

∂t

∣∣∣∣
t=0

= 0, Pa(x, t) = 0. (3.5)
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Figure 3.2: An electrical circuit of an active transmission line model of the cochlea.

The middle ear transmits the ear drum vibrations driven by sound pressure Pe

to the cochlea. The middle ear is modeled as a one degree-of-freedom mass-spring-

damper system with the following equation of motion:

Pe(t) = mmξ̈s(t) + cmξ̇s(t) + kmξs(t), (3.6)

where mm, cm, and km are the mass, damping, and stiffness, respectively, of the

middle ear. The initial conditions are given by

ξs(0) = 0, ξ̇s(0) = 0. (3.7)

3.2.2 Electroacoustic representation

The transmission line model of the cochlea can be represented by an electrical

circuit. Figure 3.2 shows an electrical representation of the one-dimensional trans-

mission line model using an electroacoustic analogy [43]. In this analogy, electrical

voltage and current variables are analogous to pressure and volume velocity, and

the electrical impedance of a circuit is equivalent to the acoustic impedance of a

system.

In Fig. 3.2, a voltage source Vs(t) drives the transmission line model, where

Vs(t) is analogous to the stapes sound pressure. The BM is spatially discretized

into N segments. The present transmission line model expands the active linear

model [30] to a nonlinear model. To produce the sharp tuning seen in the cat’s

AN, the micromechanical model was amplified using a voltage source V a
n (t) to

represent the pressure generated by the OHC [30].

The electrical impedances Z1
n, Z

2
n and Z3

n represent the acoustic impedance of

the BM, the TM and the hair bundles (HB), respectively. Inductance L, resis-

tance R and capacitance C represent acoustical mass, resistance and compliance,
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respectively

L =
m

bΔx
,R =

c

bΔx
,C =

bΔx

k
, (3.8)

where m, c, and k are mass, damping, and stiffness per area, and b and Δx are

the width of the BM and the segment length, respectively. The displacement of

ξn at the nth segment is

ξn(t) =
1

bΔx

∫
In(t)dt. (3.9)

where In(t) is the branch current at each segment.

The electrical impedance Z l
n couples neighboring segments and represents the

acoustic impedance of the fluid. The present transmission line model assumes that

the fluid is lossless and not compressive. Inductance Ll
n represents the acoustic

mass of fluid and is

Ll
n =

2ρΔx

A
, (3.10)

where ρ is the fluid density and A is the cross-sectional area of the scale.

In general, the circuit equation is defined as follows:

v(t) = Li̇(t) +Ri(t) + Sq(t), (3.11)

where v is the voltage vector, i is the current vector, q is the electric charge vector,

L is the inductance matrix, R is the resistance matrix and S is the compliance

matrix (i.e., the reciprocal of capacitance). Furthermore, a state space model is

obtained from the above equation:(
i̇(t)
q̇(t)

)
=

(
L−1R L−1S
I 0

)(
i(t)
q(t)

)
+

(
L−1 0

)(V (t)
0

)
. (3.12)

The state space model is useful for investigating properties of the transmission line

model [44, 45].

To use mesh analysis [], the voltage v, current i and electric charge vectors q

in Fig. 3.3 are set by

V (t) =

⎛
⎜⎜⎜⎝

V s(t) + V a
1 (t)

V a
2 (t)− V a

1 (t)
...

V a
N(t)− V a

N−1(t)

⎞
⎟⎟⎟⎠ , i =

⎛
⎜⎜⎜⎜⎜⎝

i11(t)
i31(t)
...

i1N(t)
i3N(t)

⎞
⎟⎟⎟⎟⎟⎠ , q =

⎛
⎜⎜⎜⎜⎜⎝

q11(t)
q31(t)
...

q1N(t)
q3N(t)

⎞
⎟⎟⎟⎟⎟⎠ . (3.13)
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(a) Base side (n = 1) (b) Middle side (2 ≤ n ≤ N − 1)

(c) Apex side (n = N)

Figure 3.3: Electrical circuit representation of the Neely and Kim model proposed
in Ref. [30]

The inductance L, resistance R and compliance matrices S are

L =

(
I
0

)(
LCP

1 0
)
+ · · ·+

(
0
I

)(
0 LCP

N

)
R =

(
I
0

)(
RCP

1 0
)
+ · · ·+

(
0
I

)(
0 RCP

N

)
(3.14)

S =

(
I
0

)(
SCP

1 0
)
+ · · ·+

(
0
I

)(
0 SCP

N

)
where LCP

n , RCP
n , and SCP

n are the matrices of inductance, resistance, and com-

pliance at each branch. On the base side (n = 1), the matrices LCP
1 , RCP

1 , and
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Figure 3.4: Electrical circuit of an active transmission line model of the cochlea.

Both the scale and offset of Gtr(ξc(t)) are changed according to the following

saturation function:

ξnlc (t) = αtr [Gtr (ξc (t) + ξc rest)−Gtr (ξc rest)] , (3.22)

where ξc rest is the rest point of the hair bundle and αtr is chosen such that ξnlc (t) =

ξc(t) when the amplitude of ξc(t) is less than 1 nm. Figure 3.4 compares the IO

property of Eq. (3.22) and the hyperbolic tangent function Eq. (5.1).

The OHC model senses the gap between the BM and TM and gives feedback to

the BM, amplifying its motion. The gap is defined as the hair bundle displacement

ξc, which depends on location and time:

ξc(x, t) = ξb(x, t)− ξt(x, t). (3.23)

The amount of feedback Pa is

Pa(x, t) = γ
(
c4ξ̇

nl
c (x, t) + r4ξ

nl
c (x, t)

)
, (3.24)
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where c4 and r4 are the damping and stiffness coefficients, respectively, and ξnlc is

calculated by Eq. (3.22). For low displacements (< 1 nm), our model reduces to

Neely and Kim’s model, because ξnlc equals ξc in Eq. (3.22).

3.4 Estimation of parameter values

The parameter values of the Neely–Kim model were fitted to the tuning curves of

the cat AN. The cat values were modified to fit human data using the Greenwood

function [47]. The quality factor of the BM was calculated as

Q1 =

√
mcat

1 kcat
1

ccat1

, (3.25)

where the superscript cat refers to the parameters of the Neely–Kim model, and

m1 = mcat
1 , c1 � m1 (2πfhuman(x))

2 , and k1 �
√
m1k1
Q1

. (3.26)

fhuman(xn) is the human frequency–position map obtained from the Greenwood

function. The damping and stiffness coefficients of the TM, HB, and OHC were

assumed to be proportional to the ratio of the human and cat BM coefficients;

that is

m2 = mcat
2 , ci = ccati

c1
ccat1

, ki = 2kcat
i

k1
kcat
1

, i = {2, 3, 4}. (3.27)

The parameter values are listed in Tables 3.1 and 3.2.

3.5 Numerical method

3.5.1 Mechanical model

The transmission line model is solved in the time domain in two steps. At each

time step, the first and second steps solve the boundary value differential equation

(Eq. 3.1) and the initial value differential equation (Eq. 3.3), respectively. The

middle ear model (Eq. 3.6) is solved in the time domain given its initial condition

(Eq. 3.7). We selected the finite difference method for the boundary value problem

and the Runge–Kutta method for the initial value problem, noting that Runge–

Kutta is the most common numerical method in the time domain Ref.[48]. The

time-step Δt is 3μs.
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Table 3.1: List of parameters in the present cochlear model. The parameters in
the middle ear model are taken from Ref. [30]. The parameter values were chosen
to accord with the CFs of human cochleas in ref. [47].

Parameter Value Unit Description
l 0.035 m Total length of the BM
N 512 Number of spatial points in the x dimension
ρ 1000 kg/m3 Density of perilymph
A 10−6 m2 Cross-sectional area of the cochlear scala
b 10−3 m Width of the BM
m1 3× 10−2 kg/m2 BM mass per unit area
c1 60 + 6700e−150x N · s/m3 BM damping per unit area
k1 2.2× 108e−300x N/m3 BM stiffness per unit area
m2 5× 10−3 kg/m2 TM mass per unit area
c2 44e−165x N · s/m3 TM damping per unit area
m3 1.4× 107e−330x N/m3 TM stiffness per unit area
c3 8e−60x N · s/m3 Resistance of the OHC’s HB per unit area
s3 2× 106e−3x N/m3 Stiffness of the OHC’s HB per unit area

c4 4400e−150x N · s/m3
Resistance driven

by OHC’s motility per unit area

k4 1.15× 109e−300x N/m3
Stiffness driven

by OHC’s motility per unit area
γ 1 Gain factor

Table 3.2: List of parameters in the OHC mechanoelectric transducer function,
obtained from Ref. [46].

Parameter Value Unit Description
ξc rest 2.0× 10−8 m Resting displacement of the OHC’s HB
αtr 1.04× 10−7 m Maximum displacement of nonlinear transduction
a1 65× 106 m−1 Constant for K1 in Eq. (7)
a2 16× 106 m−1 Constant for K2 in Eq. (7)
x1 24× 10−9 m Constant for K1 in Eq. (7)
x2 41× 10−9 m Constant for K2 in Eq. (7)
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To solve the boundary value differential equation (Eq. 3.1), we rewrite the

equation by substituting Eq 3.3 in Eq. 3.1, which yields

∂2Pd(x, t)

∂x2
− Ω(x)Pa(x, t) = g(x, t)Ω(x), (3.28)

where

Ω(x) =
2ρ

m1H
, (3.29)

g(x, t) = −
(
c1(x)

∂ξb(x, t)

∂t
+ k1(x)ξb(x, t) + Pa(x, t)

)
. (3.30)

Let us define the pressure difference vector Pd:

Pd(t) =
[
P d
1 (t) · · ·P d

N(t)
]T

, (3.31)

where P d
n(t) = Pd(xn, t). Applying a linear combination of the Taylor expansions

for Pn−1 and Pn+1 yields

∂2Pd(x, t)

∂x2

∣∣∣∣
x=xn

=
P d
n−1(t)− 2P d

n(t) + P d
n+1(t)

Δx2
+O(h2), 2 ≤ n ≤ N − 1(3.32)

∂2Pd(x, t)

∂x2

∣∣∣∣
x=0

=
2
(
P d
2 (t)− P d

1 (t)−ΔxṖ d
1 (t)

)
Δx2

+O(h), (3.33)

where Ṗ d
1 (t) = 2ρξ̇s(t) is derived from the boundary values (Eq. 3.2). Because we

assume that P is a smooth function, the boundary-value problem (Eq. 3.28) can

be expressed as a set of linear equations:

ΔPd = Y , (3.34)

where

Y =

⎛
⎜⎜⎜⎜⎜⎝

2hρξ′s(t) +
1
2
Δx2g(x0, t)Ω(x0)

h2g(x1, t)Ω(x1)
...

h2g(xN−1, t)Ω(xN−1)
0

⎞
⎟⎟⎟⎟⎟⎠ , (3.35)

and

Δ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−
(
1 + Δx2Ω(x0)

2

)
1 0 · · · 0

1 − (2 + Δx2Ω(x1)) 1 0 · · · 0
. . . . . . . . .

0 · · · 0 1 − (2 + Δx2Ω(xN−1)) 1
0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(3.36)
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In the second step, the initial value differential equation (Eq. 3.3) is solved

using the Runge–Kutta method. Let us define the state vector x and the input

vector u.

x(t) =
(
ξ̇1(t) · · · ξ̇N(t)ξ1(t) · · · ξN(t)

)T

,u(t) = (F (t), 0 · · · 0)T (3.37)

where ξn(t) = ξ(xn, t). We rewrite Eq. 3.3 into first order differential equations:

ẋ(t) = f (t,x,u)

=

(
M−1

P CP −M−1
P KP

I 0

)
x(t) + u(t)

. (3.38)

The equation is solved by the Runge–Kutta method that is widely used in the

cochlear initial value problem [48]. This method calculates the state vector x(t)

in Eq. 3.38 at any time t with time step Δt.

k1 = Δt · f (t,xn,yt)

k2 = Δt · f
(
t+

Δt

2
,xn +

Δt

2
,yn +

k1
2

)

k3 = Δt · f
(
t+

Δt

2
,xn +

Δt

2
,yn +

k2
2

)
xn+1 = xn +Δt

k4 = Δt · f (t+Δt,xn+1,yn + k3)

yn+1 = yn +
k1 + 2k2 + 2k3 + k4

6

(3.39)

3.5.2 Electroacoustic model

The electroacoustic representation in the cochlear transmission line model shows

the first order differential equation (Eq. 3.13). This form can be solved using the

Runge–Kutta method (Eq. 3.39).

3.6 Example of output and stability of transmis-

sion line model solved by linear solution

In this section, we show examples of outputs and the stability of the transmission

line model in solving the cochlear equation (Eq. 3.12) in the linear domain.

Figure 3.5 shows BM velocity and phase along the cochlear length with pa-

rameter values set to those in the original Neely and Kim model. The peak of the

amplitude of the BM velocity depends on the sound frequency. The amplitude of
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Figure 3.5: BM velocity and phase response in the linear domain
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Figure 3.6: BM velocity and phase response calculated in the linear domain

the BM velocity is amplified by the OHC model, where the gain factor γ = 1. The

phase of the BM velocity is delayed from base to apex.

Figure 3.5 shows the amount of enhancement of BM velocity along the cochlear

length. For the original gain factor, γ = 1, the enhancement is over 100 dB at the

base side. For the lower gain factor, γ = 0.8, the enhancement is about 50 dB.

The transfer function of the transmission line model described in an electroa-

coustic way (Eq. 3.12) is

G(s) = (sI −A)−1 B, (3.40)

where

A =

(
L−1R L−1S
I 0

)
B =

(
L−1 0

)
. (3.41)
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Figure 3.7: Poles of the active and linear cochlear model

To evaluate the stability of the transmission line model, we calculate the poles of

the transfer function G(s) shown in Fig. 3.7. For a lower gain factor of γ = 0.8,

the real parts of the poles show negative values. For a gain factor of γ = 1.0, the

locations of the real parts of the poles are around zero. For a higher gain factor

of γ = 1.1, the positive real parts of the poles are obtained. These results suggest

that the cochlear model is stable when the gain factor γ is less than one.

3.7 Summary

This chapter introduced the active and nonlinear transmission line model of the

cochlea. This model contains saturating feedback that is modeled by the OHC

activity, and is equal to the Neely and Kim model [30] when BM displacement is

at a lower level. The transmission line model can be described by both mechanical

and electroacoustic representations. Both representations are spatially discretized

into segments and solved using a time domain solution. The parameter values

were fitted to the human cochlear frequency map.
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Chapter 4

Compression

4.1 Introduction

Recently, psychological methods have been proposed to estimate nonlinear cochlear

input - output (IO) functions [15, 49]. In particular, the nonlinear slope of the

cochlear function, around 0.2 dB/dB, at a moderate input level is called com-

pression [14]. It is difficult to determine the physiological mechanisms of the

psychologically estimated cochlear IO function. Model studies can fill a gap in

findings between psychological studies and physiological studies. A phenomeno-

logical model has been used to point out a simple nonlinear function producing

compression [50]. However, the phenomenological model only focuses on the rela-

tionship between the input and output and regards the system as a black box [51].

To understand mechanisms of the psychologically estimated cochlear IO function,

a physiological cochlear model is needed. The physiological cochlear model pro-

posed in the Ch. 3 is tested. However, there is a problem that the simulation

paradigm differ to compare the data obtained from simultaneous masking. Si-

multaneous masking means suppressing a tone with other tone. To estimate the

cochlear IO function, a masking is needed under the condition of no suppression.

We determines the physiological mechanisms of the psychologically estimated

cochlear IO function. To make conditions of no suppressing a signal with a maker,

pulsation threshold as non simultaneous masking is employed. In this case, a sig-

nal and masker do not overlap temporally. We simulates the pulsation threshold

using a physiological cochlear model and estimates cochlear IO functions. Es-

timated cochlear IO functions obtained from the simulation are compared both

qualitatively and quantitatively. Finally, we discuss a relationship between the

psychologically estimated cochlear IO function and physiological functions of the
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Figure 4.1: Spatial BM responses for pure tones. The sound pressure level is
varied from 20 to 100 dB in 20 dB steps. The frequency is 6000 Hz. Solid and
dashed lines plot responses of the complete model and the model excluding OHCs,
respectively

cochlea.

4.2 Comparison with physiological measurements

4.2.1 Method

The transmission line model of the cochlea is used to simulate single tone BM

responses. The frequencies fp of the probe tone were varied from 1000 – 9000 Hz

in 100 Hz steps. The intensities Lp were increased from 0 to 100 dB in 10 dB

steps. The tone was presented for 55 ms, with rise/fall times of 5 ms. The model

outputs were recored for 10 ms, starting 40 ms after tone presentation.

4.2.2 Result

Figure 4.1 shows the amplitude of BM displacement excited by a single tone as a

function of the cochlear length. OHCs amplified BM motion around x = 7.9 mm

from the base. Each gain of the amplification depends on the sound pressure level.

For lower sound pressure level, the gain is over 50 dB. On the other hand, the gain
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Figure 4.2: (Top) Iso-intensity functions (frequency responses) at CF = 6000 Hz.
The sound pressure is varied from 0 to 100 dB in 20 dB steps and the imposed
frequency is varied from 1000 to 8000 Hz. Solid and dashed lines plot the frequency
responses of the complete model and the model excluding OHCs, respectively.
(Bottom) Rate of growth (ROG) functions (degree of compression) obtained from
the slopes of the frequency response curves. Linear and perfectively compressive
growth occur when ROG = 1 dB/dB and ROG = 0 dB/dB, respectively.

is less than 10 dB for higher sound pressure level.

Figure 4.2 (top) shows the amplitude of BM displacement at the CF as a func-

tion of the frequencies and levels of a single imposed tone, with and without OHC

involvement. In these plots the CF is 6000 Hz, located at x = 7.9 mm from the

base. Notice that the frequency response curves are sharper at lower input lev-

els. The peak sharpness is characterized by the quality factor Q10 (CF/bandwidth

measured at 10 dB below the peak). Q10 was 4.4 at 0 dB, comparable to animal

experimental data ([52]). The frequency responses broadened and the gain was

reduced as the input intensity increased. At frequencies lower than half an octave

below the CF, the OHC process exerted little effect on the BM displacement. At

around the CF, however, the OHCs amplified the BM displacement by over 50 dB,
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relative to the case of no OHC involvement.

To characterize the degree of compression in the frequency response curve, the

rate of growth (ROG) was plotted at various stimulus levels. The results are shown

in the bottom panel of Fig. 6. At frequencies less than half an octave below the

CF, the ROGs closely approximate 1 dB/dB. The ROGs around the CF are much

less than 1 dB/dB (around 0.10 dB/dB), indicating a compressive nonlinearity

around the CF.

4.2.3 Discussion

The BM responses to a pure tone were found to depend on input level (Figs. 4.1

and 4.2). Those results are realistic, because it implies that compression is solely

caused by the attenuated cochlear amplification, itself imposed by the saturating

properties of the OHCs. According to the OHC model described by Eq. (7), the

output of the OHCs is linear at low displacement levels and saturates at higher

levels, consistent with compression [14].

4.3 Comparison with psychological measurements

4.3.1 Method

Pulsation threshold

To estimate the cochlear IO function, the pulsation threshold technique is used

[15]. Figure 4.3 shows the stimuli, signal and masker. The signal and masker

are alternatively presented. The pulsation threshold is the threshold for the per-

ception of the stimuli changing from continuous to pulsating or from pulsating to

continuous. This perceptional phenomena could be accounted that amounts of the

basilar membrane responses are same for both the signal and masker [53].

Simulation

A computational method to estimate the pulsation threshold has already been

proposed [50]. Employing this method, the cochlear IO function is defined by the

estimated masker level of threshold L̂m as a function of signal level Lp. Figure

4.4(A) outlines the computational method, which comprises (1) a cochlear model

and (2) estimation of the masker level threshold. In Ref. [50], a functional model

of the cochlea [39] was used. The transmission line model of the cochlea is used to
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Figure 4.3: Schematic illustration of the temporal (left) and spectral (right) char-
acteristics of the stimuli in the pulsation threshold technique. Symbols “S” and
“M” are indicate the signal and the masker, respectively.

investigate the relationship between psychological measurements and physiological

mechanisms.

First, two pure tones constructed by the signal and the masker are input to

the cochlear model at different times. Signal frequency fp is set to 250, 500,

1000, 2000, 4000 and 8000 Hz. Masker frequency fs is set to 0.6fp. Outputs

of the cochlear model are velocities of a basilar membrane (BM) model at the

characteristic frequency, the most responsible location for the signal, equal to the

signal frequency .

Finally, the masker level of the threshold is calculated from the simulation

result of the cochlear model. Inputs of the estimating method are BM velocities

for the signal and masker. If the BM velocity for the masker equals the BM

velocity for the signal, then the output of the method is the estimated masker

level of threshold L̂m. Otherwise, the workflow returns to the cochlear model and

the BM velocity is calculated for the different masker level.

Figure 4.4 (B) is a block diagram of the transmission line model of the cochlea.

The signal and masker as inputs of the cochlear model do not overlap temporally.

Outputs of the cochlear model are the velocity of the BM. In the cochlear model,

there is a feedback system to amplify the BM motion. However, the output of

the feedback system could saturate with an increasing input level. The saturation

property is derived from the outer hair cell (OHC) model. The OHC model is

based on findings of the activity of the OHC and is constructed from the two

elements shown at the bottom of Fig. 4.4 (B). The first element is modeled by

mechanoelectrical transduction described in Ref. [46]. The second element is

modeled by a springdamper system as the soma of the OHC.

Figure 4.4 (C) illustrates the method for estimating the threshold of the masker
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Figure 4.4: (A) Outline of the simulation. fs: signal frequency. fm: masker
frequency. Ls: signal level. L̂m: Estimated masker level of the threshold. (B) Block
diagram of the transmission line model of the cochlea. (C) Schematic illustration
of outputs of the BM model and estimation of the threshold of the masker level .
The masker level was set to fit a maximum response of the BM to the signal and
a response of the BM for the masker at the same location

level. The pulsation threshold is described in Sec. 2.1. The threshold of the masker

level is estimated as follows. (1) BM velocity ξs for the signal is calculated at the

characteristic frequency (=fp). (2) BM velocity ξm for the masker is calculated

at the same location. (3) If the BM velocity for the masker ξm equals the BM

velocity for the signal ξs, then the output of the method is the estimated masker

level of threshold L̂m. Otherwise, the workflow returns to (2) and the BM velocity

is calculated for the different masker level.

4.3.2 Result

Cochlear input-output function

Figure 4.5 shows cochlear IO functions estimated in the simulations. The rapid

growth depends on the decreasing signal frequency below a frequency of 1000 Hz.

At signal frequencies exceeding 1000 Hz, a break point appears at input levels

of 40 to 50 dB. Afterward, the slopes are gentle. On the other hand, at signal
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Figure 4.5: Cochlear IO functions estimated in the simulations. The signal fre-
quency fp is given above each figure.

frequencies of 500 and 1000 Hz, a break point appears at a higher input level.

There is only one break point without a condition in the signal frequency of 1000

Hz .
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Table 4.1: Slopes of the cochlear IO functions at moderate input levels (50 to 80
dB) [dB/dB] indicating the rate of the compression.

Signal frequency [Hz] 250 500 1000 2000 4000 8000

Plack and Oxenham. (2000) [dB/dB] [15] 0.76 0.50 0.34 0.32 0.33 0.41
Present study [dB/dB] 1.01 0.75 0.42 0.20 0.26 0.25

Rate of compression

To compare the rate of compression between the psychological result[15] and the

simulation result, Table 4.1 presents the slopes of the cochlear IO functions at

a moderate input level. The trend of the slopes obtained in the simulations is

comparable to that in the experiments or is higher in the experiments. The rates

of compression are higher and constant at signal frequencies exceeding 1000 Hz.

At a signal frequency below 1000 Hz, the rate of compression decreases with signal

frequency. In the physiological experiments [14], the slope is around 0.2 dB/dB at

higher frequencies. The simulation results account for the results of physiological

experiments.

4.3.3 Discussion

We sought to clarify the relationship between the physiological cochlear IO function

and the psychological cochlear IO function. The physiological cochlear IO function

is the maximum cochlear response as a function of the input level. The output

of the psychological cochlear IO function differs apparently from the physiological

cochlear IO function and is the threshold of the masker level as a function of the

signal level. However, the results are compatible according to the hypothesis of the

pulsation threshold. The model results showed that the growths of the cochlear

responses were (1) compressive at the characteristic frequency and (2) linear at

low frequency. Thus, the growths of the BM responses are compressive for the

signal and linear for the masker.

The cochlear IO functions shown in Fig. 4.5 were obtained from the simula-

tion. The shapes of the IO functions depending on the signal frequencies were

compressive and similar to those obtained in the psychological experiment [15]. In

the cochlear model, the nonlinear element is the OHC model and it produces the

compression in the cochlear IO function. The OHC model is based on modeling

the nonlinear motility of the OHC. Therefore, it is suggested that the motility of
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the OHC produces the nonlinear cochlear IO function obtained from the pulsation

threshold.

The ideal cochlear IO function has been proposed; the function has (1) linear

growth at a lower input level, (2) compressive growth at a moderate input level

and (3) linear growth at a higher input level [14]. There are two break points in

the ideal cochlear IO function. Simulation results show one break point at lower

or higher input levels except at signal frequency of 1000 Hz. This result is derived

from the narrow range of input levels from 20 to 80 dB. Hence, the ideal cochlear

IO function is simulated for the audible range from 0 to 120 dB .

Table 4.1 shows comparable rates of compression in the psychological [15] and

physiological experiments . The results indicate that the simulations of the pul-

sation threshold not affected by suppression can be used to correct the nonlinear

cochlear IO function . The results of the simultaneous masking experiments [54]

show a rate of compression higher than the pulsation threshold. In simultaneous

masking, the cochlear IO function is affected by suppression.

The shapes and rates of the cochlear IO functions obtained in the simulations

depend on the signal frequency. These trends are due to BM amplification depend-

ing on the characteristic frequency. At the apex of the cochlea (having a lower

characteristic frequency), the level of amplification is not great[52]. At the base

of the cochlea (having a higher characteristic frequency), the level of amplification

is great [52]. It has been suggested that the shapes and rates of the cochlear IO

functions depend on the amplification generated by the activity of the OHC. The

results of this simulation confirm this hypothesis.

4.4 Summary

In this chapter, we investigate how compression in the cochlear IO function is oc-

curred using the transmission line model including the active and nonlinear OHC

model. The OHC model is inspired from the OHC motilities and its IO function is

fitted by the second order Botlzmann function as the saturation function. The re-

sults obtained from the model can account for both physiological and psychological

measurements, and is caused by the active and nonlinear OHC model. This finding

suggest mechanisms of compression in two steps. Firstly, at lower sound pressure

level, the OHC model boots the BM motion linearly. Secondly, over moderate

sound pressure level, this BM amplification is saturated in the OHC model.
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Chapter 5

Two-tone suppression

5.1 Introduction

A distinctive feature of cochlear nonlinearity is two-tone suppression (2TS), in

which one pure tone reduces the cochlear response to a second tone. The dominant

and suppressed tones are called the suppressor and probe, respectively. This 2TS

phenomenon, first observed in the auditory nerve (AN) half a century ago [16],

has also been detected in the basilar membrane (BM) [17] and the inner hair

cells (IHCs) [18] within the past two decades. Ref. [17] concluded that 2TS

originates from mechanical phenomena at the BM and is generated by an active

process. Some form of saturation is involved, as evidenced by the features of

cochlear nonlinearity such as compression and distortion products. Compression

can be realized by amplifying the saturation function (e.g. [14]), and distortion

products are generated when two tones pass through the saturation process as

inter modulation [55].

According to experimental measurements of mechanoelectric transduction by

outer hair cells (OHCs), the saturation function can be described by a second-

order Boltzmann function. This function purportedly explains the nonlinearities

in cochlear mechanics [56]. The cochlear mechanism of Geisler and Nuttall [57]

is based on a saturating function of 2TS imposed by a low-frequency suppressor

on the BM. The low-frequency suppressor operates a rest point on the input-

output (IO) property of the saturating function. However, the high-frequency tone

suppresses the BM response of the probe in experiments ([58], [59]). Therefore,

it appears that 2TS mechanisms are distinguishable by the frequency ratio of the

2TS.

Modeling studies can potentially explore 2TS mechanisms beyond the reach
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of current experiments. Cochlear models can be classified into phenomenologi-

cal models and transmission line models. Phenomenological models focus on the

cochlear I/O properties, and fit the experimental 2TS data by simple nonlinear

I/O functions [39, 40]. Transmission line models simulate the traveling wave dy-

namics of the cochlea. Neely and Kim suggested that sharp tuning can be realized

by applying pressure to an active element on the BM [30]. Other workers have

simulated 2TS using active elements that respond nonlinearly to sound pressure

levels [34] or BM motions [36].

The present paper proposes a special saturation function that uniquely pro-

cesses the combined input of two tones. This saturation function, which includes

active and nonlinear elements, successfully generates 2TS on the BM. By incorpo-

rating this function into a nonlinear transmission line model, we conceptualize a

novel 2TS mechanism.

5.2 Two-tone suppression in saturation function

5.2.1 Point operation theory

In the 2TS mechanism proposed by Geisler and Nuttall, the saturating function is

based on a point operation [57]. The point operation for suppression is schematized

in Fig. 1. Panels (a) and (b) of this figure display the I/O property of the

saturating function and the output waveform, respectively. The input waveform

is shown in Fig. 1c.

The output waveform is conserved when a low-level tone is input (dashed line

in Fig. 1c), but is compressed when the input is a high-level tone in the nonlinear

region.

Two-tone suppression in the saturating function arises by several mechanisms.

First, a pair of tones with very different frequencies is input to the saturating

function as shown in Fig. 1c. Second, the peaks of the output waveform are

greatly compressed (Fig. 1b). Finally, the effects of the lower frequency tone are

removed by passing the output waveform through a high-pass filter (Fig. 1d).

The suppressive and temporal features of the filtered wave arise because the lower

frequency tone governs the rest point of the higher frequency tone on the IO

property.
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Figure 5.1: Schematics of the point operation concept for 2TS proposed by Geisler
and Nuttall [57]; (a) a saturating IO curve, (c) two-tone input and (b) output. (d)
The output with its low frequency components removed.

5.2.2 Vector subtraction theory

We propose vector subtraction as an alternative means of handling suppression.

Conventionally, suppression is calculated by subtracting the mutual suppressive

output (response to simultaneous sinusoidal inputs) from the self-suppressive out-

put (response to sinusoids with no temporal overlap). Self-suppression and two-

tone suppression are formulated as separate vectors. We also define the vector

space set, in which the probe and suppressor input frequencies are represented as

independent axes (Fig. 2). The self-suppression vector is calculated by summing

the saturation function responses to the pure tones; the two-tone suppression vec-

tor expresses the pair of tones input to the saturation function. Vector subtraction

then gives the difference between the self-suppression and two-tone suppression.

We now mathematically formulate self-suppression, two-tone suppression and

their difference. First we express the nonlinear saturation function G(ξ) as a
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third-order Taylor expansion:

G (ξ) = tanh (ξ) � ξ − ξ3

3
. (5.1)

Denoting the two sinusoidal inputs as ξ1 = A1 sin θ1 and ξ2 = A2 sin θ2, their

outputs are calculated as

G (ξ1) �
(
A1 − A3

1

4

)
sin θ1 + distortions

G(ξ2) �
(
A2 − A3

2

4

)
sin θ2 + distortions.

(5.2)

In their respective one-dimensional spaces θ1 and space θ2, these outputs equal

ξ1 and ξ2, when A1 and A2 are substantially less than 1, and saturate when A1

and A2 are approximately greater than 1. When two sinusoids are simultaneously

input as a two-tone suppression, the output is

G (ξ1 + ξ2) �
(
A1 − A3

1

4
− A1A

2
2

2

)
sin θ1+

(
A2 − A3

2

4
− A2

1A2

2

)
sin θ2+distortions.

(5.3)

The nonlinear output calculated by Eq. (5.3) clearly differs from that of self-

suppression (such as the superposition of Eq. (5.2)). In Eq (5.3), the saturations
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generated by the pair of sinusoids interfere with each other. The output can now

be represented in a two-dimensional θ1–θ2 space. To preserve the unique property

of Eq. (5.3), the difference between the two-tone and self-suppression is expressed

as

G (ξ1 + ξ2)− (G (ξ1) + G (ξ2)) �
{

−A2
1A2

2
sin θ2 if A1 � A2

−A1A2
2

2
sin θ1 if A1 � A2.

(5.4)

Equation (5.4) indicates that the difference between the two outputs is reduced by

the higher-amplitude sinusoid.

5.2.3 Two-tone suppression in outer hair cell model

The OHC model has been proposed in Section 3.3 and has the nonlinearity based

on the machanoelectric transducer Gtr. Figure 5.3 show the vector differences

of the mechanoelectric transducer Gtr (modified by Eq. (3.20)) and the simple

feedback system including the the mechanoelectric transducer Gtr for two arbitrary

frequencies f1 and f2 under the conditions of self-suppression Gtr(ξc(f1)+Gtr(ξc(f2)

and two-tone suppression Gtr(ξc(f1) + ξc(f2)). The vectors point vertically or

horizontally when |ξc(f1)| � |ξc(f2)| and |ξc(f1)| � |ξc(f2)|. This phenomenon

reflects the output reduction by the stronger input, which can be calculated by

the saturation function Eq. (5.4).

5.3 Simulation method

Model is mechanical representation.

The frequency fp of the probe tone was 6000 Hz and the frequencies fs of the

suppressor tone were varied from 1000–9000 Hz in 100-Hz steps (excluding 6000

Hz). The intensities Lp and Ls were increased from 20 to 80 dB in 10-dB steps.

The probe frequency fp is usually set to the characteristic frequency (CF) of the

cochlear region (x = 7.9 mm), defined as the frequency of maximum excitation

at 0 dB input. Each of the two primary tones was simultaneously presented for

55 ms, with rise/fall times of 5 ms. The model outputs were recorded for 10 ms,

starting 40 ms after tone presentation to allow the system to reach steady state.

In the time domain, the model outputs were the BM velocity ξ̇b (x, t) and the

BM displacement ξ̇b (x, t), which were separated into probe tone and suppressor

tone components. In the frequency domain, the outputs were the BM velocities

ξ̇b (x, fp) and ξ̇b (x, fs), and the BM displacements ξb (x, fp) and ξb (x, fs). These
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Figure 5.3: Residual vectors in the hair cell process for inputs of two arbitrary
frequencies with amplitudes ranging from 1 nm to 100 nm.

components were obtained by fast Fourier transform (FFT) of their counterparts

in the time domain.

5.4 Result

5.4.1 Input dependence

he frequency dependence of two-tone suppression at Lp = 20, 40, 60, and 80 dB

is shown in Fig. 5.4(a)–(d). Clearly, the amount of suppression reduces as Lp

increases.
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Figure 5.4: Suppression (ordinate) of a 6-kHz probe tone at (a) Lp = 20 dB, (b) Lp

= 40 dB, (c) Lp = 60 dB, and (d) Lp = 80 dB by a suppressor tone as a function
of suppressor frequency (abscissa). The intensity Ls is varied from 80 dB (thickest
line) to 20 dB (thinnest line) in 10 dB steps. In the absence of a suppressor tone,
the curves are normalized by the probe displacement.

First let us examine Fig. 5.4(a), in which the probe level Lp is 20 dB. At a sup-

pressor level of 80 dB (darkest line) and suppressor frequencies of 4000 and 6500

Hz, the suppression is at least –40 dB. An interesting effect is the sharply reduced

suppression at suppressor frequencies of 1000, 1200, 1500, 2000 and 3000 Hz (=

CF/6, CF/5, CF/4, CF/3 and CF/2, respectively). In fact, at these frequencies the

suppression crosses the 0 dB line, indicating amplification of the BM motion by the

probe. At suppressor frequencies just below the CF, the suppression steadily in-

creased with suppressor level. However, when fs � CF , the suppression increased

drastically with suppressor level (exceeding 60 dB). Notches were not observed,

and suppression was strong (∼ –40 dB) at low suppressor frequencies.

At Lp = 40 dB (Fig. 5.4(b)), the suppression pattern matches that at Lp =

20 dB, but the suppression peaks and notches are less prominent. At Lp = 60

dB (Fig. 5.4(c)), suppression is reduced at all suppressor frequencies, reaching a
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maximum of –30 dB at 4000 Hz. Notches and peaks disappear. At Lp = 80 dB

(Fig. 5.4(d)), little suppression occurs and the maximum is –10 dB at around fs

= CF.

Figure 5.5 plots the BM iso-displacement contours at the CF produced by

two-tone excitation, as functions of probe and suppressor level. The numbers at

the right are the frequency ratios. The left and right columns show the BM dis-

placements by the probe and suppressor, respectively. Both probe and suppressor

levels increase from 20 dB (thin lines) to 80 dB (thick lines) at the four investi-

gated frequency ratios (fs/fp = 0.18, 0.95, 1.05, and 1.50 (top to bottom)). At

fs/fp = 0.18, the BM displacement is constant at suppressor levels below 50 dB.

However, at suppressor levels of 50 dB and above, the BM displacement by the

probe decreases with increasing suppressor level. The same trend is observed at

fs/fp = 0.95 and 1.05. At fs/fp=1.50, the suppressor only slightly affects the

BM displacement. In the suppressor plots, the BM displacement is independent

of probe level at fs/fp = 0.18. At fs/fp = 0.95 and 1.05, the BM displacement

by the probe decreases with increasing probe level. At fp/fs=1.50, it displaces by

under 1 nm.

5.4.2 Rate of suppression

The rate of suppression (ROS) measure is computed as the slope of the displace-

ment IO function. A large ROS value indicates a rapid suppression response;

conversely, zero ROS indicates no suppression. ROS is a function of the frequency

ratio and the relative levels of the primaries. As shown in Fig. 5.6, suppression

gently increases. The ROSs plotted in Fig. 5.6 are calculated from the I/O func-

tions shown in Fig. 5.5. At fs/fp = 0.18, the ROS curves are maximized (at

approximately 2.0 dB/dB) at the highest suppressor level and the lowest probe

level. The ROS maximum was found to decrease with increasing probe level. The

ROS is 0 dB/dB at low suppressor levels, and increases as the suppressor level in-

creases from 60 dB. At fs/fp = 0.95 and 1.05, the ROS is maximized at 1.0 dB/dB.

The curves plateau at mid-range suppressor levels and systematically shift toward

higher levels with increasing suppressor level. The maximum ROS is below 0.1

dB/dB at fp/fs = 1.50, and unresponsive to suppressor level.

The previous results were obtained under four suppressor frequency conditions.

To investigate how the ROS behaves over a wider range of suppressor frequencies

(600–9000 Hz), we plotted the maximum ROS as a function of suppressor fre-
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For probe For suppressor

0.18

0.95

1.05

1.50

Figure 5.5: BM iso-displacement curves for excitation by probe (left panels) and
suppressor (right panels) as functions of suppressor level Ls and probe level Lp.
The probe tone was set to the CF (6000 Hz) and the suppressor tones were 4200
Hz, 5700 Hz, 6300 Hz, and 8000 Hz (rows top to bottom). The indexes on the curve
are the displacements (relative to the reference displacement of 1 nm). Contours
are plotted in 6 dB steps. Dashed lines indicate displacements below 1 nm.
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Figure 5.6: Rate of suppression (ROS) of the probe tone computed as the slope of
the displacement I/O functions in Fig. 8 for four suppressor frequencies (specified
as ratios fp/fs). Increasing line thickness indicates the increasing level of Lp (from
20 to 80 dB).

quency. The results are presented in Fig. 5.7. At fs � CF , peaks and notches ap-

pear in the maximum ROS curves. The average ROS is approximately 2.1 dB/dB,

with the exception of two suppressor frequencies (CF/2, CF/3, CF/4, CF/5 and

CF/6) at which virtually no suppression is observed (see Fig. 5.4). At fs ≥ CF ,

the maximum ROS values decrease with increasing suppressor frequency.

To summarize the effects of CF and suppressor frequency on the ROS, the

maximum ROS was fitted by the three-parameter model proposed by [60]. This

model expresses the maximum ROS, α, as a function of the CF and suppressor

frequency fs:

α = a+ b · g(fs/CF ), (5.5)

g(fs/CF ) =

{
log10(fs/CF/c) if fs/CF > c

0 otherwise
, (5.6)

where a denotes the plateau maximum at low suppressor frequencies, b is the slope
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Model result

Fitted curve for model results

Fitted curve for cat’s AN

Figure 5.7: Scatter plot of maximum ROS values. Individual data points are
plotted from the simulated ROS functions with the probe at CF. The solid line
plots the model predictions according to Eq. (7). The parameter values of a, b,
and c, obtained from the simulation results, are 2.06, 5.35, and 0.62, respectively.
The dashed line plots the model predictions of Eq. (7) with a, b, and c set to 1.44,
1.46, and 0.32, respectively. These values were obtained from auditory nerve data
([60]).

around fs/CF =1, and c is the location of the breakpoint in Eq. 5.5. The solid

line in Fig. 5.7 is obtained by fitting the maximum ROS to Eq. 5.5. This model

captures the main trends of the maximum ROS. The parameter values in this

study were higher than those extracted from auditory nerve data ([60]), which are

plotted as the dashed line in Fig. 5.7.

5.4.3 Temporal feature

Figure 5.8 shows the CF response waveforms at two suppressor frequencies (1100

Hz and 4000 Hz). The input levels of the probe and suppressor are fixed at 50 dB

and 70 dB, respectively. Frequency components lower than CF were removed by
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Figure 5.8: Temporal BM response at CF equaled to 6000 Hz. (Dashed) CF-alone
responses at Lp = 40 dB. (Solid) CF responses obtained with two suppressors at
Lp = 40 dB and Ls = 80 dB. (Top) fs = 1100Hz (Bottom) fs = 4000 Hz. The
responses are filtered to remove the suppressor effects.

low pass filtering at fs/fp = 0.18. Second and third harmonics at fs/fp = 0.66

were removed by an additional band-pass filter. Response amplitudes must have

been reduced by the suppressor, because the CF-alone response is approximately

10 nm (see the dashed line). At fs/fp = 0.18, the envelope of the waveform

is modulated at the suppressor frequency. At fs/fp = 0.66, this low-frequency

modulation disappears.

5.4.4 Cochlear impedance

Impedance Zcp(ω) in the micromechanical cochlea model has been defined as [30]

Zcp(x, ω) = Z1(x, ω) +
Z2(x, ω) (Z3(x, ω) + γ(x, ω)Z4(x, ω))

Z2(x, ω) + Z3(x, ω)
(5.7)

γ(x, ω) =
ξnlc (x, ω)

ξc(x, ω)
, (5.8)
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Figure 5.9: Real part of the impedance Zcp(x, ω) along the cochlear length for four
ratios (a)–(d) of fp/fs and angular frequency ω (calculated as 2πfp rad/s). The
x-axis ranges from 2 to 10 mm and the traveling wave of the probe is maximized
at 8 mm. The probe level is 20 dB, and the suppressor level is increased from 20
dB (thin lines) to 80 dB (thick lines) in 20-dB steps.

where Z1, Z2, Z3, and Z4 are the respective mechanical impedances of the BM,

TM, HB, and OHC in Fig. 3.1 and ω is the angular frequency. However, Eq.

5.7 is expressed in terms of frequency whereas the model is solved in the time do-

main. Therefore, the velocities in the time domain were converted to the frequency

domain by FFT.

Figure 5.9 plots the impedance Zcp under the four conditions in Fig. 5.4
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with Lp = 20 dB. The traveling wave peaks at approximately 8.0 mm from the

stapes. Cochlear amplification is induced by negative values of the real part of the

impedance, which are generated by the active OHC model. At fs/fp = 0.18, both

real parts follow the same trend at Ls = 20, 40 and 60 dB. At Ls = 80 dB, the

real part of the impedance becomes positive around a cochlear length of 7.5 mm.

At fs/fp = 0.95 and 1.05, the real part of the impedance becomes increasingly

more positive, and the suppressor level covers a wider range of cochlear lengths

than when fs/fp = 0.18. At fp/fs = 1.33, the real part of the impedance becomes

less negative around a cochlear length of 5.0 mm as the suppressor levels increase,

but is independent of input level around 8 mm, the location of the traveling wave

peak.

5.4.5 Overall response

To examine the overall response of the cochlear model, the energy of BM vibration

Eb was evaluated. The relevant energy of the BM vibration can be experimentally

quantified by measuring the power in the cochlear fluid surrounding the BM [61].

Also relevant is the longitudinal coupling of the BM to the tectorial membrane [62].

Under our simulation conditions, the BM vibrations of both probe and suppressor

can be considered as simple harmonic motions; this assumption is validated by

FFT-ing the steady-state output of the model. According to Meriam and Kraige

([63]), the energy Eb(ω) of the BM vibration is given by

Eb(ω) =
1

2
K(ω)b2Δx2

N−1∑
n=0

|ξbn(ω)|2, (5.9)

where K(ω) = m1ω
2 (ω = 2πf), m1 is the BM mass per unit area, b is the width

of the BM, and Δx is the segment length. The calculation results are plotted in

Fig. 13.

At fp/fs = 0.18 (top left of Fig. 5.10), the energy of the probe is clearly

suppressed by the higher energy of the suppressor, whereas the energy of the

suppressor is minimally reduced (note the slight shift toward the left). In the

following cases (fp/fs = 0.95 and 1.05), the energy is greatly suppressed by the

companion tone. Finally, at fp/fs = 1.33, the energy of the probe is suppressed

by the suppressor except at very high probe energies, when the energy of the

suppressor is weakened (as evidenced by the left-pointing arrows).
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Figure 5.10: Vibration pattern of probe and suppressor expressed in terms of BM
energy. Circles indicate BM vibration energy under the no-suppression condition
(i.e., no temporal overlap between the probe and the suppressor). Arrows indicate
shifts in BM vibration energy from the condition of no temporal overlap to the
simultaneous input of probe and suppressor.

5.5 Discussion

5.5.1 Mechanisms of two-tone suppression

This paper has sought to reproduce the experimental findings of 2TS within a

nonlinear cochlear model. In this section, we discuss the likely mechanisms under-

lying the simulation results. Basically, our model supports two mechanisms of 2TS

generation: the point operation theory and the vector subtraction theory (devel-

oped in Sec. 5.2.1 and 5.2.2, respectively). Regarding the point operation theory,

the phasic suppression shown in Fig. 5.1 is similar to the 2TS obtained from the

experimentally determined BM responses shown in Fig. 5.8(a). Furthermore, the

suppressor reduced the probe responses only at fp/fs = 0.18 (see Fig. 5.10(a)).

Tonic suppression, or response suppression of the weaker tones by the stronger

49



tones, was enabled at higher suppressor frequencies (see Fig. 5.10(b)–(d)). This

phenomenon results from the vector subtraction theory, assuming that the OHCs

are the sole nonlinear elements. Under these conditions, the theoretical residual

vectors are similar to the 2TS obtained from the experimental BM responses shown

in Fig. 5.10(b)–(d).

As shown in Fig. 5.10, the BM vibration energy of both suppressor and probe

ranged from 20−25 to 20−20 J. Comparable values around the peak of the traveling

wave have been reported in experimental studies ([61]). The suppression is max-

imized at 50 dB (Fig. 5.4), and stronger tones suppress the response to weaker

tones (Fig. 5.10(b)–(d)). The level-dependent point responses in Fig. 5.5 show

that both probe and suppressor are suppressed by the higher-level companion when

their frequencies are close, but this trend disappears when the frequencies are very

different. Suppression occurs around the peak of the traveling wave, indicating

problems with employing point responses.

2TS originates from two tones of different frequencies. The simulated level-

and frequency-dependencies of 2TS Figs. 5.4 and 5.5 match the experimental

results of Rhode [59]. Therefore, 2TS generation can be understood from the two-

dimensional spreading behavior of compression in the OHC model (see Fig. 5.2).

For this purpose, expressing both dimensions in frequency units is advantageous.

In Fig. 5.5, the responses of the weaker probe or suppressor are suppressed by the

stronger companion when the probe and suppressor frequencies are close. When

the two frequencies diverge, the peaks of the traveling wave become widely spaced

and each peak stimulates separate populations of OHCs. In Fig. 4.2, the traveling

wave peaks are well-separated, and the OHCs can amplify BM motion around

the CF; conversely, the OCHs are unresponsive to low-side suppressor frequencies.

Similar behavior has been reported in physiological studies [57]. However, at high

suppressor frequencies, the suppressor affects the tail of the traveling wave of the

probe, generating less and gentler suppression (Fig. 5.5).

Figure 5.7 reveals several features of the maximum ROS: (1) slow variation at

low side frequencies, (2) a breakpoint below the CF, and (3) a minimum around

the CF. According to Fig. 4.2, the BM response to a tone linearly increases with

frequency at low side frequencies, but shows compressive growth around the CF.

This suggests that the growth rates of the BM responses to a suppressor and a

tone are identical. Similarly, the OCH inputs might behave linearly at low-side

frequencies and compressively around the CF. The compressive growth of the OHC
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output in response to a probe reduces the gain of the cochlear amplifier, leading

to 2TS and compression.

Suppression is subdued and more gradual at the highest suppressor frequen-

cies (Fig. 5.9(d)), which has implications for the traveling wave theory. From

the peak of the traveling wave (x 	= 8.0 mm), the real parts of the impedance

progressively shift toward zero around x = 7.0 mm, implying less cochlear am-

plification. According to deBoer and Nuttall [64], the amplification is lowered by

negative-to-positive conversion of the real parts of the impedance, itself imposed

by the neighboring peaks of the traveling waves. If true, this theoretical notion

explains the reduced suppression under such conditions.

Panels (a)–(c) of Fig. 5.9, in which the probe is suppressed despite the changes

in the real parts of the impedances at lower suppressor frequencies, are problematic.

The real part changes from negative to positive around the peak of the traveling

wave, as reported in deBoer and Nuttall [64]. The actual situation is unclear, but

these findings collectively indicate that the OHCs around the peak of the traveling

wave play the major role in 2TS, and that OHCs far from the peak are responsible

for the lesser, more gradual, suppression at higher suppressor frequencies.

5.5.2 Comparison with previous works

The suppression reduced from 50 to 10 dB as the probe levels rose from 20 to 80

dB (see Fig. 5.4). In a previous experimental report, the suppression magnitude

decreased from 35 to 5 dB as the probe level rose from 15 to 55 dB ([17]). Given

that suppression depends on the state of the cochlea—it can reach 50 dB in an

intact cochlea but is seriously impaired in a damaged one ([59])—these results are

broadly comparable. In the current study, the ROS function plateaued at 1 dB/dB

when the suppressor frequency approximated the probe frequency (see Fig. 5.6(b)

and (c)). When the suppressor frequency was lower than the probe frequency (Fig.

9a), the onset of ROS growth was shifted upward, reaching as high as 2 dB/dB.

Our simulated ROS values can also be compared with previous experimental data

([59]). The present results reveal breakpoints and slow variation in the maximum

ROS values at low side suppressor frequencies (see Fig. 5.7). However, these

results differ from the experimental findings of Rhode [59], in which the maximum

ROS monotonically decreases with increasing suppressor frequency.

According to some previous AN experiments, the maximum ROG ranges from

1 to 3 dB/dB for below-CF suppressors, and rapidly decreases with increasing sup-
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pressor frequency [60]. This finding is consistent with the model results plotted in

Fig. 5.7. However, for below-CF suppressors, the distributions of the maximum

ROG values differ between the results of AN and BM experiments. The filtering

function of the IHC may account for such discrepancy [65], but this suggestion

is unsupported by our model results. Instead, it appears that mechanical trans-

duction of the BM directly affects neural information coding in the AN. Whether

mechanical events fully account for neural data was discussed for below-CF sup-

pression in the previous subsection.

The suppression at low side frequencies demonstrated phasic temporal behavior

(see Fig. 5.8(a)). However, at frequencies approximating the CF, this trend was

replaced by a tonic temporal feature (Fig. 5.8(b)). Phasic and tonic suppression

has been experimentally observed at suppressor frequencies up to 4 kHz; at higher

suppressor frequencies, the suppression is predominantly tonic. The CF in these

experiments was around 17 kHz [57].

5.5.3 Transferring the vector subtraction theory to other
models

The two-dimensional property of our model should be easily transferable to other

models, including transmission line models, phenomenological models of the cochlea,

and simple models of the cochlear partition. Regardless of fluid coupling, 2TS

should emerge in the overall BM responses in present transmission line models

(see Fig. 5.10). The two-dimensional property of the OHC model (expressed by

Eqs. (5.3) and (5.4) and illustrated in Fig. 2C) derives from the feedforward sys-

tem in Eqs. (5.1) and (3.22). However, as described in Sec. II.C, the cochlear

feedback system exists within the OHC system. Despite these different starting

points, the saturation function exhibits 2TS in the BM model, as shown in Fig.

5.10. Therefore, the two-dimensional property of the saturation function can prob-

ably simulate 2TS on the BM in other cochlear models.

Like the present model, existing transmission line models [32, 66, 34, 36] gen-

erate 2TS using a single active, nonlinear element. Therefore, we can compare the

2TS mechanisms of previous models with those examined here. Our parameter

values are outside the experimentally determined parameter range because our

model is somewhat simplified. More realistic parameter values were adopted in

an elaborate transmission line model ([67]). Moreover, the motion of the organ

of Corti is difficult to describe because this organ constitutes a variety of tissues,
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whose stiffness varies in complex ways [68].

The two-dimensional property of the saturation function is applicable to phe-

nomenological models, which similarly adopt an I/O function. A phenomenological

model generally assumes a feedforward system [39, 40]; for this reason, it can be

well-matched to a two-dimensional saturation function.

Simple models of the cochlear partition, such as the present model and nonlin-

ear oscillator models, provide identical descriptions of activities that ignore fluid

coupling. The nonlinear oscillator model replicates the essential nature of 2TS,

namely, that a primary tone suppresses or is suppressed by another primary tone

[69] (see Fig. 5.10). The active nonlinear processes in the nonlinear oscillator

model have been related to hair bundle motility [10]. Alternatively, the active

process might be explained by somatic motility [6]. The potential importance of

mechanoelectric transduction and somatic motility in the active process has also

emerged in the oscillator model [70]. These studies support the idea that the

OHC mechanoelectric transfer function influences the active nonlinear process in

cochlear mechanics.

5.6 Summary

To explain two-tone suppression induced by active and nonlinear process in the

cochlea, we developed a special saturation function with a distinctive residual re-

sponse to a two-tone input. This function was incorporated into the nonlinear

transmission line model, which is similar to others reported in the literature. Our

model displays two types of suppressive mechanisms, depending on the suppressor

frequencies. 2TS was realized by the vector properties and the point operation in

the saturation function for near-CF suppressors and low-side suppressors, respec-

tively. Our basic formulations are readily adaptable to other cochlear models. Such

a low degree-of-freedom model could also be useful for investigating other cochlear

nonlinearities. Our work has demonstrated how a single cochlear variable—the

BM vibration energy—can explain nonlinear cochlear dynamics.
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Chapter 6

Distortion product

6.1 Introduction

Cochlear nonlinearities depend on sound pressure level with in the intact cochlea

[52]. As one of cochlear nonlinearities, distortion products (DPs) is a response

to an absent tone when a two-tone pair is transmitted to the hearing apparatus.

This phenomenon was observed in the auditory nerve half a century ago [19], in

the otoacoustic emission [20] and on the basilar membrane [21, 22]. Amplitudes

of DPs depend on the sound pressure level in the animal measurements [71, 72].

These level dependence of DP can be explained explicitly by a saturation function

that generates a modulation effect when a two-tone pair is presented [55].

Mechanoelectric transduction in the outer hair cells (OHC) produces a satura-

tion function that has been supposed to be the source of nonlinearities in cochlear

mechanics, and can be described by a second-order Boltzmann function [56]. The

second-order Boltzmann function modeling the mechanoelectric transduction in

the OHC also generated DPs depending on the input levels [46]. Furthermore,

a simple phenomenological feedback model including the second-order Boltzmann

function showed DPs [73]. However, it has not yet been reported the effect of DP

that deference between feedfoward and feedback is.

One of the source of these nonlinearities is commonly believed to be a saturating

process in the cochlea. The transmission line models of the cochlea well predicted

DPs that is obtained from a dynamic interaction including a saturating feedback

[37, 35, 36]. However, clear explications for DPs within the transmission line have

not yet been reported because complex structure [37] and many parameters [35].

In order to interpret those results, simplified models are required.

As basic cochlear nonlinearity depending on sound pressure level, the compres-
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sive growth in input–output (IO) function of the cochlea has been introduced. The

experimental measurement showed that a slope value was less than 0.2 dB/dB for

sound pressure levels above about 30 dB SPL [59]. This compressive nonlinear-

ity has been also believed to be generated by the saturation function located in

the OHC. However, a slope of the saturation function is completely compressed,

0 dB/dB, for higher input levels. To fit the compressive IO curve, simple phe-

nomenological feedback models including a saturation function have been used

[74, 75].

Frequency selectivity is a central part of cochlear function, and cochlear models

accounting for frequency selectivity can be realized phenomenologically by filter

banks [40, 39]. These phenomenological models can account for cochlear nonlinear-

ities as shown in the transmission line model [37, 35, 36]. Despite good fittings for

these cochlear nonlinearities, most of the phenomenological models are feedfoward

models. Instead of a saturation function, they apply a power-law nonlinearity to

generate compressive growth.

To account for the mechanisms that produce DP depending on input level in

the cochlea, the aim of this paper is to introduce the significance of feedback on the

saturation function. Two simple phenomenological models, a power-law nonlinear

model and a transmission line model of the cochlea are proposed. These simple

models form either feedfoward or feedback and consist of one saturation function

and one gain factor. The power-law nonlinear model shows compressive growth

without saturation function. A transmission line model of the cochlea including a

saturating feedback are developed. The models are tested for both single and dual

tones.

6.2 Model

6.2.1 Modulation in saturation function

Modulation in the saturation function can account for DP [55]. In this section, we

introduce modulation in the saturation function.

The equation of a saturation function that emits output y for input x is

y(t) = G (x(t)) , (6.1)

where t is a time series and G (·) is a saturation function. To analyze the saturation
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function, we define it as

G (x) = tanh (x) � x− x3

3
. (6.2)

From third-order Taylor expansion, the saturation function can be explained

by the above power series. Let x(t) denote sum of two sinusoids a1 sin (2πf1t) +

a2 sin (2πf2t) where a1 and a2 represent an amplitude and f1 and f2 represent

frequency. In this case, y(t) includes harmonics {3f1, 3f2} and DP { 2f1 − f2,

2f2 − f1, 2f1 + f2, 2f2 + f1 } that can be derived from the trigonometric addition

formulas. Amplitudes of both harmonics and DP depend on the amplitude of

input x(t). For example, DP for 2f1 − f2 is proportional to a21a2.

6.2.2 Simple models

G

+

+

G

+
+

(a) Feedforward (b) Feedback 

Figure 6.1: Block diagram of simple models. (a) Feedforward model. (b) Feedback
model.

The feedback from the OHCs affects cochlear processing and is the amplifica-

tion and the saturating process . An linear feedback model amplifying input x(t)

is

y(t) = ay(t) + x(t), (6.3)

where a is gain factor (0 ≤ a < 1). To transform above equation, an linear

feedforward model is obtained:

y(t) =
1

1− a
x(t). (6.4)

A simple feedforward model is proposed in Fig. 6.1(a). The equation of the

feedforward model based on Eq. 6.4 including the saturation function G in Eq.

6.1 is

y(t) =
1

1− a
G(x(t)) + x(t), (6.5)
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Table 6.1: Slope values for input-output property of the transmission line model
over the input range 30 - 80 dB

Frequency [Hz] 1000 2000 4000 8000
Slope [dB/dB] 0.18 0.13 0.12 0.20

A simple feedback model is proposed in Fig. 6.1(b). To expand the linear model

in Eq. 6.3, the equation of the feedback model including the saturation function

G in Eq. 6.1 is

y(t) = aG(y(t)) + x(t). (6.6)

The gain factor a is set to 0.99. It was determined so that the outputs of the

simple models at the lower input levels were higher by 40 dB relative to those of

the model with no gain because the OHCs amplify BM motion over 40 dB [52].

6.2.3 Power-law nonlinear model

Compressive growth in the cochlear IO property can be fitted by a power-law

nonlinearity [39]:

y = |x|p sgn (x) , (6.7)

where the power p is less than unity. The signum function is defined by

sgn (x) =

⎧⎨
⎩

−1 for x < 0
1 for x > 0
0 for x = 0

. (6.8)

6.3 Simulation method

Each of the two primary tones was simultaneously presented for 65 ms, with

rise/fall times of 5 ms. Recording of the model outputs started 40 ms after pre-

sentation of the tones (because the system requires sufficient time to reach steady

state) and lasted 20 ms. In the time domain, the outputs of the model were BM

velocity ξ̇bn (t) and BM displacement ξbn (t), which were separated into primaries

ξbn (f1) and ξbn (f2) and distorted components (e.g. ξbn (2f1 − f2) ) in the frequency

domain using the fast Fourier transform.
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Figure 6.2: Input-output properties. Reference values are y = 101, y = 10−1, y = 1
and ξbn = 1 nm for the simple feedforward model, the simple feedback model, the
power-law nonlinear model and the transmission line model, respectively. CF:
Characteristic frequency.
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6.4 Result

6.4.1 Pure tone response

Figure 6.2 shows the IO properties of the simple models and the transmission line

model. The input levels were chosen to generate a moderate level of compression.

The IO properties are linear at the lower and higher input levels. The BM

displacement of the transmission line model was amplified over 50 dB on the lower

input level, in the same way as the linear region in the Neely and Kim model. For

the transmission line model, compression depends on the sound frequency. The

IO curves are most compressive for the characteristic frequency (most sensitive

frequency for the stimuli) and decrease of compression degree for lower input fre-

quency. To evaluate whole cochlear responses from 1000 Hz to 8000 Hz, the slopes

values for the IO properties of the transmission line model for CF is calculated

over the input range from 30 to 80 dB. Table 6.1 shows the slope values which

range from 0.12 to 0.20.

Physiological studies have measured the most compressive growth of the IO

properties for the CF and found that the degree of compression decreased when

the input frequencies were far from the CF in mammals [52]. The slopes of the IO

properties for the moderate input level were 0.1 to 0.2 in the sensitive chinchilla

cochlea [59].

6.4.2 Distortion product

Figure 6.3 shows BM displacement for f1 and f2 along the cochlear length in the

transmission line model. Frequencies f1 and f2 were equal to 2850 and 4000 Hz.

The peaks of the waves were located 10 and 12 mm from the stapes. Phases for

f1 and f2 delayed from the base to the apex. This result introduces the forward

propagation of waves, known as the traveling wave theory.

Frequencies f1 and f2 produced DP 2f1 − f2. The peak amplitude for 2f1 − f2

appeared at 16 mm and is similar to that produced by f1 and f2 as input tones. The

phase for 2f1 − f2 differed from the phases for f1 and f2, and indicated backward

and forward wave propagation.

As shown in Fig. 6.3, BM vibration distributed spatially for both the primaries

and DP. However, the experimental studies measure the point responses of the BM.

To avoid this problem, we evaluated the energy of the BM vibration in terms of

the overall response of the BM. According to Ref. [63], the energy of the BM
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Figure 6.3: Spatial distribution of BM displacement. (Top) Envelopes and (Bot-
tom) phases for the primaries f1 and f2 and DP component 2f1 − f2. The thick,
thin, and dashed lines indicate displacement for f1, f2 and 2f1 − f2, respectively.
Frequencies f1 and f2 are equal to 2850 and 4000 Hz, respectively.

vibration, Eb(ω) is given by

Eb(ω) =
1

2
K(ω)b2Δx2

N∑
n=1

|ξbn(ω)|2, (6.9)

where K(ω) = m1ω
2 (ω = 2πf) and m1 is BM mass per unit area. This equa-

tion ignores the longitudinal coupling motion reported by Meaud and Grosh [62]

because the model does not include the longitudinal coupling of the BM.

Figure 6.4 are isolevel contours of the cubic distortion 2f1 − f2. The input

frequencies f1 and f2 are 3650 and 4000 Hz (f2/f1 = 1.1) for the simple models

and the power-law nonlinear model and 16 different frequencies f1 and f2 for the

transmission line model: f2 = 1, 2, 4 and 8 kHz and f2/f1 = 1.4, 1.3, 1.2 and 1.1.
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Figure 6.4: Amplitude of cubic distortion 2f2 − f1 as a function of input levels.
Iso-output contours are plotted in 4 dB steps. As a reference, the contour corre-
sponding to 0 dB for output is indicated with a thick line. Solid or dashed line
represent higher or lower output level, respectively. (a) and (b) Frequencies of the
primaries f1 and f2 are 3650 and 4000 Hz, respectively. (c) Reference level is 10−25

J.
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The outputs of the transmission line model are the energy of the BM vibration Eb

calculated from Eq. 6.9.

In the simple feedforward model, the contour are oblique that are parallel. In

the simple feedback model, the contour are well rounded. The power-law nonlinear

model shows that the contour for the lower power p,become more oblique and

narrower than for the higher power p. The transmission line model predicts the

round contour on the diagonal line. The distribution depends on the frequency

ratio f2/f1 and is not influenced by frequency f2. For the lower frequency ratio

f2/f1, the contour become more oblique and narrower than for the higher frequency

ratio f2/f1. All models shows that the stripes are narrow where L1 > L2 and are

broad where L1 < L2.

6.5 Discussion

6.5.1 Comparability of transmission line model and simple
models

This paper proposed the simple models categorized to phenomenological models

focusing on the nonlinear IO function of the cochlea and the nonlinear transmis-

sion line model of the cochlea. In this section, we discuss comparability of the

transmission line model and the simple models.

Properties of the present models are the amplification and the saturation where

a tone is presented shown in Fig. 6.2. The gain function in the present simple

models amplified the input x(t) to 40 dB on the linear region and saturated on

the nonlinear region. The active element regarding to the OHC ’s motilities in

the present transmission line model also amplified BM vibration over 50 dB on

the lower sound pressure level condition and reproduced the compression on the

moderate input levels.

The simple models amplified both the primaries and distortion in the saturation

function G in the Eqs 6.5 and 6.6. The present transmission line model showed the

forward traveling waves for the primaries f1 and f2 and the forward and backward

traveling wave for the distorted 2f1 − f2 where a pair of two tones is presented in

Fig. 6.3. The forward traveling wave for a tone are amplified by active element

in the cochlea [30] and is similar to the forward traveling waves for the f1 and f2.

On the other hand, the forward and backward traveling waves for the 2f1 − f2

were generated at x = 11 nm. Li and Grosh [76] reported that an internal and
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local source could excite both forward and backward traveling waves of the BM.

The envelope of the forward traveling wave show a similar shape for the f1 and

f2. This result indicates that the active element amplifies the spatial responses for

the distortion.

6.5.2 Characteristics of DP levels

In this section, we discusses the significance of the saturating feedback to account

for the mechanisms that produce DP depending on input level in the cochlea.

Measurements of BM vibration in animals [71] and DPOAE [72] showed that DP

levels that increased as a function of input levels, had peaks at equal input levels

and were sensitive to f2. The peak amplitudes show the growth with the input

levels, and the shapes of curves on the contour map broadened with increments

of the frequency ratio f2/f1. Liu and Neely showed similar results generated by a

saturating feedback within a transmission line model [35].

The amplitudes of DP can be explained that DP amplitude is proportional

to input levels in the saturation function as described in Sec. 2.1. However, this

cannot explain why the peaks appeared on the diagonal line of Fig. 6.4. We assume

that the third-order power series expansion in Eq. 6.1 causes this disagreement

with the data.

The mechanoelectric transduction in the OHC shows similar input level depen-

dency for DP in both feedfoward and feedback forms[46, 73], whereas, it was not

reported the effect of DP for differences between feedfoward and feedback. The

deference between the feedfoward and feedback is degrees of compressive growth in

the IO function shown in Fig. 6.2(a). Degree of compressive growth for the simple

feedback model is lower than for the simple feedfoward and could be fitted by the

power-law nonlinear model in Fig. 6.2(b). The DPs obtained from the simple

models in Fig. 6.4(a) are corresponding to those of the power-law nonlinear model

in Fig. 6.4(b). This result indicates that the appropriate degree of compressive

nonlinearity generated by the saturating feedback affects the DPs depending on

input levels.

Complex structure [37] and many parameters [35] in the transmission line mod-

els have caused to be difficulties to understand mechanics of DP. In Fig. 6.4, the

results obtained from the transmission line model showed similar level dependence

of DP to those of the simple feedback model, especially for the higher frequency

ratio f2/f1. The functions of the simple feedback model are amplification and
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saturation realized by one gain factor and one saturation function. Also, the satu-

rating feedback in the present transmission line model affects amplification of the

BM motion and have limitation of this amplification. This reason indicates that

the saturating feedback generated the level dependence of DP in the transmission

line model. The simple models cannot explain the frequency ratio dependence

because of the lack of a frequency term in the simple models described in Eqs. 6.5

and 6.6.

6.6 Summary

The modulation effect in the saturation function is a simple and useful explana-

tion of the level dependence of distortion product on the cochlea as a feedforward

process. However, cochlear processing has been believed to a saturating feedback

process. In the present paper, we proposed simple feedforward and feedback mod-

els including one saturation function and one gain factor, a power-law nonlinear

model to fit compressive curves, and a transmission line model including a satu-

rating feedback. At moderate input levels, the models show distortion products.

The dependence of these distortion products on primary input levels in the simple

feedback model is similar to the results obtained from the power-law nonlinear

model fitting the compressive growth to the simple feedback models. In addition,

those results is shown in the transmission line model. The results suggest that

compressive nonlinearity generated by the saturating feedback is dominant to DP

and the simple feedback model can account for the details of distortion products

in the cochlea.
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Chapter 7

Conclusions and further research

In this chapter, we summarize the main conclusions of this thesis and provide some

suggestions for further research.

7.1 Conclusions

The cochlea analyzes sound frequency before humans perceive the sound’s pitch.

This analysis can process varied sounds, softer to louder and low-pitched to high-

pitched. Furthermore, the active and nonlinear processes in the cochlea produce

this analysis in an elaborate way. To understand how to realize these active and

nonlinear processes, isolated cell experiments have shown these processes in the

OHCs. Consequently, it is believed that active and nonlinear processes in the

OHCs produce the cochlear nonlinearities.

This thesis concentrates on using a model to investigate how the active and

nonlinear processes generate cochlear nonlinearities. To do this, we propose a

one-dimensional transmission line model of the cochlea, including an active and

nonlinear element inspired by the isolated OHC findings. This approach is mo-

tivated by the fact that the transmission line model is derived from fundamen-

tal physical principles. Consequently, results obtained from the transmission line

model can account for the cochlear mechanics. In this thesis, we focus on three

typical cochlear nonlinearities: compression, two-tone suppression (2TS), and DP.

The results of the computational simulation using the proposed model suggest the

mechanisms of the cochlear nonlinearities.

In Chapter 2, we described the structure and response of the auditory periph-

eral system.

In Chapter 3, we proposed the one-dimensional transmission line model of the
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cochlea with feedback via the active and nonlinear OHC model. The active OHC

model amplifies the BM motion, and is inspired by both somatic and the hair

bundle motility. The shape of the IO property of the OHC is fitted by a second-

order Boltzmann function obtained from mechanoelectrical transduction in the

OHC.

In Chapter 4, we investigated compression with the proposed model. This

model could account for compression obtained from both physiological and psy-

chological experiments. This result was obtained by the saturation of the OHC

amplification.

In Chapter 5, we investigated 2TS with the proposed model. The results of

the model are comparable to those from 2TS obtained from experimental mea-

surements. To explain this phenomenon, we presented a residual vector concept

in the OHC model. This concept was previously shown in the BM motion.

In Chapter 6, we investigated how DP is generated by saturating feedback.

We compared three models. The first model was the transmission line model,

the second model focused on cochlear saturation processing, and the third model

was designed to fit compressive growth in the IO function. These models, with

appropriate parameter values, could demonstrate the DP seen in the experimen-

tal measurements. These results suggest that the compression produced by the

saturating feedback affects DP.

7.2 Suggestions for further research

In this section, we describe suggestions for further research.

1. For cochlear modeling

Cochlear modeling studies are categorized into two types: transmission line

modeling and phenomenological modeling. The former describes the hydro-

dynamics of the cochlea, and the latter focuses on signal processing in the

cochlea. In thesis, we could detect the source of the cochlear nonlinearities

such that the saturating effect in the OHC generates an appropriate degree of

compression. This concept can be applied to both transmission line and phe-

nomenological modeling. Thus, we can fill the gap between transmission line

and phenomenological modeling to better describe cochlear nonlinearities.

2. Model for engineering and medicine

The prediction of cochlear responses in individual hearing is important in
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the fields of engineering and medicine. Particularly when fitting hearing aid

systems, an estimation of degree of hearing loss is necessary. Senile and noise-

induced hearing losses are caused by the decay of the active and nonlinear

OHC function. In this thesis, we tested the cochlear model, including the

active and nonlinear function of the OHC, and showed the active and non-

linear mechanisms. Thus, choosing the parameter values of the OHC model

leads to the reproduction of the hearing loss, and can clarify the mechanisms

of senile and noise-induced hearing losses.

3. For OAE measurement

OAEs are paid the most attention to as a non-invasive measurement method

for cochlear motion and are considered to relate to the active and nonlinear

cochlear responses. However, the mechanisms of OAEs are still unclear. In

this thesis, we evaluated the overall BM responses to explain the cochlear

nonlinearities. Moreover, it is possible that the overall BM responses can

account for the active and nonlinear process of OAEs.
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