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SUMMARY  Test compression/decompression is an efficient
method for reducing the test application cost. In this paper we
propose a test generation method for obtaining test-patterns suit-
able to test compression by statistical coding. In general, an
ATPG generates a test-pattern that includes don’t-care values.
In our method, such don’t-care values are specified based on an
estimation of the final probability of 0/1 occurrence in the re-
sultant test set. Experimental results show that our method can
generate test patterns that are able to be highly compressed by
statistical coding, in small computational time.
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1. Introduction

As the size and complexity of VLSI circuits increase,
the size of test sets for such circuits also increases.
The increase in test set size requires larger storage and
longer time to transport test sets from the storage de-
vice of a VLSI tester (ATE) to the circuit-under-test
(CUT). Especially in core based designs, the amount of
test sets tends to increase because each individual core
requires a separate test set.

To alleviate this problem, two kinds of useful ap-
proaches are proposed: test compaction [1]-[3] and test
compression [4]-[8]. The former, test compaction is a
method for reducing the number of test-patterns while
the fault coverage achieved by the test-patterns is kept
high. The latter, test compression is a method to en-
code a given test set before test application, and then
decode it by a decoder on a target CUT. We focus on
test compression in this paper.

Figure 1 shows a scheme underlying test compres-
sion methods. In this scheme, a given test set is com-
pressed by a data compression technique and stored in
a VLSI tester storage. While a CUT on a chip is tested,
the compressed test set is transported to a decompres-
sor on the chip, and then decompressed and fed to the
CUT. The compressed test set can achieve the reduc-
tion of the time for test transportation, not just the
size of the test storage device. Time required for de-

Manuscript received January 22, 2002.
Manuscript revised May 29, 2002.

TThe authors are with the Faculty of Information Sci-
ences, Hiroshima City University, Hiroshima-shi, 731-3194
Japan.

*Presently, with AS System Business Division, ADVAN-
TEST Corporation.

compression is negligible because the clock frequency
in a chip is faster than that of a VLSI tester.

A test compression/decompression method using
the Burrows-Wheeler transformation and run-length
code for test compression has been proposed [4]. This
method can achieve high compression of test sets, so
that the transportation time from the test storage de-
vice to CUTs decreases greatly. However, the decom-
pression is complex, and hence was implemented in soft-
ware.

The methods proposed in [5] and [6] are based
on cyclical scan registers. In these methods, a given
test set/sequence is converted to a difference vector se-
quence, and it is compressed by run-length code [5] or
Golomb code [6]. Although the methods can accom-
plish a high compression of test sets, additional circuits
for configuring the cyclical scan registers and control-
ling a testing clock are needed.

The methods of [7] and [8] employ statistical coding
as a compression method for a test set. Since a statisti-
cal code decides the length of a code word according to
the probability of occurrences of each unique pattern,
the encoding compresses a test set efficiently. In addi-
tion, the decoder (decompressor) can be implemented
with a simple finite state machine (FSM). In [7], a BIST
architecture for non-scan sequential circuits based on a
statistical code has been presented. This method is use-
ful for circuits in which the number of primary inputs is
small. The paper [8] presented a statistical code called
a selective code based on the Huffman code, and pro-
posed a method for compressing scan vectors by means
of the code. Although the average length of a selective
code word is a little longer than that of a Huffman code
word, the decoder for the selective code needs fewer
states than that for the Huffman code.

In compression methods based on statistical cod-
ing, the compression ratio of a test set depends on the
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Fig.1 Scheme of test compression.
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probability of occurrence of each pattern in the test
set. The authors[9] proposed a method to transform
generated test sets so that the compression ratio of the
test set is enhanced by varying the probability of oc-
currence of each pattern. In the method, fault simula-
tion is repeated to keep fault coverage achieved by the
test set. Repeating fault simulation makes the compu-
tational time large, but the method of [9] drastically
improves the compression of test sets.

In general, an ATPG (test-pattern generator) gen-
erates a test-pattern that include don’t-care values for
a fault. Such don’t-care values of the generated test-
pattern are specified by a certain method (e.g., ran-
domly), and then fault simulation for the completely-
specified test-patterns is performed. If we can specify
don’t-care values in each generated test-pattern so that
it is suitable for statistical coding, the resultant test set
can be compressed efficiently.

In this paper, we propose a test generation method
for compression by statistical coding. In this method,
a test-pattern that has don’t-cares is specified by esti-
mating the probability of occurrence of each pattern.
The probability estimation in the proposed method
is updated along with the progress of the test gen-
eration process, and the code word of each pattern
is determined step by step, i.e., the final code word
is determined dynamically. In contrast, note that we
can consider that the method [9], mentioned above, is
static because the transformation is performed after a
completely-specified test set is generated.

The remainder of this paper is organized as follows.
Section 2 reviews a statistical encoding method of a test
set. Section 3 describes the motivation and the strat-
egy of our method, and then proposes the procedure of
our method. Section 4 gives experimental results, and
Sect. 5 concludes the paper.

2. Test Compression by Statistical Code

Here, we illustrate the method proposed in [8] as an ex-
ample of test compression using statistical encoding. To
encode a given test set, the test set is partitioned into
n-bit blocks, i.e., each block is an n-bit pattern. Table 1
shows a test set which consists of twelve test-patterns
divided into 4-bit blocks. The reason for partitioning
a test-pattern into blocks is to keep the complexity of
a decompression circuit and decompression delays low.
Each block pattern is mapped into a variable-length
code word. The length of a code word depends on the
probability that each pattern appears in the test set.
The more frequently a pattern occurs, the shorter the
length of a code word for it. Table 2 shows the number
n; and the probability p; of occurrence of each unique
pattern z; in the test set of Table 1. In addition, Huff-
man code words, as an example of statistical encoding,
are shown, too.

The average length of a statistical code is derived
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Table 1  Test set divided into 4-bit blocks.
test 1: 1111 0101 0011 1111 1011 1110 1101 1011
test 2: 1111 1111 1111 1111 0000 0000 0000 0000
test 3: 1001 0010 0110 0111 1110 1101 0110 1110
test 4: 1111 1111 1110 0110 1111 1001 1111 1011
test 5: 1111 1111 0111 1010 1111 1111 0111 1111
test 6: 0010 1110 1000 0100 1111 1111 1111 1111
test 7: 0110 1011 1011 1011 1101 0111 1011 0111
test 8: 1100 1000 1010 0111 0101 1011 1111 1101
test 9: 1011 0100 1101 1101 1110 1111 1111 1111
test10: 1111 1011 0111 0101 1111 O111 1111 1101
testl11l: 1100 1101 1001 1110 1110 1101 1011 0110
test12: 0111 0010 1111 1111 0111 1111 1011 1111
Table 2 Block pattern probability table and Huffman code
words.
i T; ng i Huffman Code
1 1111 | 30 | 0.3125 11
2 1011 | 12 | 0.1250 100
3 0111 | 10 | 0.1042 010
4 1101 9 0.0938 000
5 1110 8 0.0833 1011
6 0110 5 0.0521 0011
7 0000 4 0.0417 10101
8 0010 3 0.0313 01111
9 1001 3 0.0313 01110
10 | 0101 3 0.0313 01101
11 | 1100 2 0.0208 01100
12 | 0100 2 0.0208 00101
13 | 1000 2 0.0208 00100
14 | 1010 2 0.0208 101001
15 | 0011 1 0.0104 101000
entropy: 3.2740 ave. 3.3125
#states of FSM 15

from Zzl p; - w;, where w; is the length of the code
word corresponding to pattern z;. As shown in Ta-
ble 2, the average length of a Huffman code word in
this example is 3.3125. It is well-known that a lower
bound of the average length of a code word used for
encoding an information source can be expressed by
its entropy. The entropy of a test set is given by
H = —>" pi - log, p;, where the test set includes
m unique patterns x1,o,..., T, with probabilities of
occurrence pi,ps,---,Pm, respectively. The average
length of a Huffman code word for a block pattern is
the closest to the entropy of a test set. The entropy
of the test set of Table 1 is 3.2740, it is close to the
average length of a Huffman code word 3.3125.

An important property of a statistical code is
prefix-free, i.e., a code word is never a prefix of another
code word. Note that Huffman code is prefix-free. If the
decoder for a prefix-free statistical code is constructed
as a finite state machine (FSM), the decoder requires m
states, where m is the number of unique patterns. For
example, the decoder for the Huffman code in Table 2
requires fifteen states.
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3. Highly-Compressible Test Generation by
Statistical Coding

3.1 Motivation

As mentioned in the previous section, the entropy of a
test set gives a lower bound of the average length of a
statistical code word for the encoded test set. Accord-
ingly, in general, a statistical encoding method makes
the average length of its code word close to the entropy
of a target test set. Consequently, in test compression
using a statistical coding, we can expect that, if we
can reduce the entropy of a test set, the average length
of a code word for the test set becomes small. Note
that, although the example of a statistical code in the
previous section is Huffman code, this observation will
be applicable not only to Huffman encoding but also
to a general statistical coding, e.g., comma coding [7],
selective coding [8].

The following Lemma 1, which has been proved
in [9], leads a method to generate a test set with low
entropy. Thus, we apply Lemma 1 to test pattern gen-
eration.

Lemma 1: Consider a block with pattern x, in a test
set partitioned into fixed-length blocks. If pattern x, of
the block can be replaced with pattern x; that occurs
more frequently than z,, i.e., p, < pp, then the entropy
of the encoded test set decreases. O

Consider the example in Table 1 again. Assume
that pattern “1010” of a block (which is boldfaced)
is replaced with pattern “1111,” which occurs most
frequently. In this case, the number of block pattern
“1111” increases by 1 to 31 and the number of block
pattern “1010” decreases by 1 to 1, so that the entropy
becomes 3.2284, which is smaller than the previous en-
tropy 3.3125.

3.2 Strategy

Prior to the specification of our test generation method,
first we describe an underlying test generation algo-
rithm. For a fault selected from a given fault list,
a test-pattern that includes don’t-care values is gen-
erated. The don’t-care values of the generated test-
pattern are specified by a certain procedure (e.g., at
random straightforwardly). Fault simulation for the
completely-specified test-pattern is performed and the
detectable faults identified by the fault simulation are
dropped from the fault list. These processes are re-
peated until the fault list becomes empty.

Our strategy is to specify don’t-care values so that
the resultant test set is suitable to compression by sta-
tistical coding. That is, after generating a test-pattern
that includes don’t-care values in the above test gen-
eration, we specify the don’t-care values so that the
entropy of the resultant test set becomes low. In the
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concrete, based on Lemma 1, we specify a block pat-
tern including don’t-care values so that the block pat-
tern becomes the pattern that occurs most frequently
in the test set. However, the probabilities of occur-
rence of block patterns can not be obtained until the
completely-specified test set is generated. Therefore,
we use a method for estimating the occurrence proba-
bility, which is called block probability estimation.

In order to precisely estimate the probability of oc-
currence of a block pattern, we introduce two parame-
ters Nx and Ng which are concerned with the number
of block patterns.

3.3 Procedure for Generating Compressible Test

Here, we present a straightforward procedure for
compressible test generation. Figures 2 and 3
show procedures of our method. Procedure Gener-
ate_Compressible_Test in Fig. 2 gives a overview of the
proposed method. It receives four parameters F,n, Nx

1 Generate_Compressible_Test(F,n, Nx, Ng)
2 F: fault list;
3 n: length of a block;
4  Nx, Ngr: number of X blocks;
5 4
6  Set test set T = ¢;
7 Set block pattern probability table BPPT = ¢;
8  for(each fault f in F){
9 Generate test ¢ for f and add ¢ into T
10 Divide test set T into n-bit blocks;
11 if(the number of X blocks in T is over Nx)
12 Specify_X _Block(T, BPPT, Nr);
13 Perform fault simulation with tests completely spec-

ified in 7', and drop the detected faults from F’;
14}
15 Specify_X_Block(T, BPPT,0);
16 return T
17 }

Fig.2 Compressible test generation procedure.

—_

Specify X _Block(T, BPPT, Ng)

2
3 Count the number of each unique block pattern in 7',
and update BPPT;

4 for(each test t; € T' in the order of generation){

5 for(each block b; in ;){

6 if(b; is not X block) continue;

7 for(each by, € BPPT in descending order of the

probability of block pattern){

8 if(b; is compatible with bx){

9 Replace b; with by;
10 Update BPPT;
11 break;
12 }
13 }
14
15 if(the number of X blocks in T is equal to Ng)
16 return;
17}
18 }

Fig.3 X block specification procedure.
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and Ng. F is a given fault list, and n is the length of
block pattern. Nx and Ng are the numbers of X blocks
in which patterns include don’t-care values. In the pro-
cedure, T is a test set to be generated and BPPT is a
block pattern probability table which shows the prob-
ability of each pattern like Table 2, and it is used for
block probability estimation.

Basically, for each fault f in fault list F', our pro-
cedure generates test-pattern ¢ which may include X
blocks (lines 8-9 in Fig.2). After dividing generated
test set T into n-bit blocks (line 10), if the number of
X blocks is over Nx, the procedure calls sub-procedure
Specify X _Blocks that specifies X blocks (lines 11-12).
If there newly exist completely-specified tests, fault
simulation is performed for the tests (line 13). When
fault list F is empty, the don’t-care values remaining in
test set T are specified (line 15) and then the procedure
returns test set T’ (line 16).

Procedure Specify_X_Block is shown in Fig. 3. The
procedure receives three parameters T, BPPT and Ng.
In the procedure, t; € T denotes the ¢-th generated test
pattern, and p; € BPPT is a block pattern whose fre-
quency of occurrence is the i-th of all block patterns
in BPPT. After being called from procedure Gener-
ate_Compressible_Test, the procedure counts the num-
ber of each unique block pattern in 7" and then updates
block pattern probability table BPPT (line 3 in Fig. 3).
For each test ¢; in the order of generation, it is checked
if each X block b; in test ¢; is compatible with block
b appearing more frequently (lines 4-8). Note that
X block b; is said to be compatible with completely-
specified block by, if the don’t care values of b; can be
specified so as to b; is equal to by. If X block b; is com-
patible with block b (line 8), the procedure replaces X
block b; with block b, and updates BPPT (lines 9-
10). If the number of X blocks in test set T is equal to
Npg (line 15), the process returns to procedure Gener-
ate_Compressible_Test.

We demonstrate our procedure by Figs.4 and 5.
Suppose that procedure Generate_Compressible_Test is
called with n = 4, Nx = 7 and Nr = 3, and then it
generates four test patterns without calling procedure
Specify_X_Block. The partitioned test set is shown in
Fig.4 (a). Note that, in this example, a block can lie
on more than two consecutive test-patterns of a test
set, e.g., a block “XXX1” on test-patterns t; and t
in Fig.4 (a). The corresponding decompressor can be
implemented without extra schemes (see [8] in detail).
After generating four test patterns, since the number
of X blocks in the test set is over Nx (in this case, they
are 8 and 7, respectively) Specify_X_Block is called. In
procedure Specify_X_Block, the block pattern probabil-
ity table shown in Fig. 5 is constructed. Note that the
elements of table is sorted in descending order of the
frequency of each block pattern, and an X block (e.g.,
“X00X”) is counted as all of the compatible block pat-
terns (e.g., “0000,” “0001,” “1000” and “1001”). Based

1469
0123456789 0123456789

t]o 10 1loxo1lxx] [u]o1o1Jo1 oilo1

2 X 1Ix 0 0 xlo XX 1 2]o 1jooo1fo101

BIX 10X]X1X1]00 B30 10 1][X1X1]00

t4]o X[1 1 01]JoX0 1 4]0 X1 1 0 1JoX0 1

(a) Initial partitioned test set (b) After X block specification
(Nr =3)

Fig.4 Example of test generation.

block pattern | #freq.
0101 7
0001 6
1101 4

Fig.5 Block pattern probability table.

on the block pattern probability table, X blocks are
specified until the number of X blocks remaining in the
test set is equal to Ng (3 in this case). Figure 4 (b)
shows the test set after the X block specification. Note
that X blocks are specified in order of their genera-
tion (in this case, “0X01” in ¢1, “XXX1” in ¢1 and ¢2,
“X00X” in 2, ...). Four X block patterns “0X01,”
“XXX1,” “0XX1” and “X10X” are replaced with com-
patible pattern “0101” which occurs most frequently,
and an X block pattern “X00X” is replaced with “0001”
which occurs secondly frequently. In this case two test-
patterns are completely specified, and hence fault sim-
ulation is performed for the two test-patterns in proce-
dure Generate_Compressible_Test.

Here, we consider the effect of parameters Nx and
Npg on the reduction of test set entropy. When large
Nx is set, the number of test-patterns that are gen-
erated before specifying X blocks in procedure Spec-
ify_X_Block becomes large. Accordingly, the block
probability estimation may be precise because it can
be formed with many test-patterns. On the other hand,
when large Npg is set, the number of X blocks that are
specified by a call of Specify_X_Block becomes small,
that is, X blocks are specified more cautiously. Con-
sequently, large Nx and Npg are desirable for reducing
the entropy of the generated test set.

From the viewpoint of the number of generated
test-patterns, however, large Nx and Np may in-
crease the resultant number of test-patterns. The rea-
sons are as follows. When large Nx is set, the num-
ber of test-patterns that are generated before speci-
fying X blocks in procedure Specify_X_Block becomes
large. Since fault simulation is performed only for
completely-specified test-patterns, the number of times
of fault simulation decreases. Accordingly, the number
of faults dropped from a fault list by fault simulation
also decreases, so that the number of faults targeted
for test generation at line 9 in Fig.2 increases. The
increase of the target faults is directly linked to the in-
crease of test-patterns. When large Ny is set, on the
other hand, many incompletely-specified test-patterns
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remain in test set T after specifying X blocks. As a
result, in the same way as large Nx, large Ng leads to
the decrease of the number of times of fault simulation,
so that it increases the number of test-patterns.

From the above discussion, there exist optimum
Nx and Npi which achieve small test-patterns in num-
ber and the small entropy of the resultant test set. We
consider optimal pair of Nx and Np through the ex-
periments shown in the next section.

Since the order of X block specification affects the
resultant code word length, there may exist several
methods for specifying X blocks other than the pro-
posed X block specification in Fig. 3. However, we use
Specify_X_Block, which specifies X blocks in order of
their generation, because of the following several advan-
tages. One is that the extra effort for the X block spec-
ification is small because a certain procedure for decid-
ing an X block specification order is not required. An-
other reason is that the proposed method is applicable
to sequential circuits because specifying test-patterns
in the order of their generation suites to a requirement
that fault simulation for a sequential circuit should be
performed in the order of a test sequence.

4. Experimental Results

We implemented the proposed method in C and ap-
plied it to ISCAS benchmark circuits on a worksta-
tion Sun Ultra 10 (UltraSPARC-IIi, 440 MHz). The
implementation is based on test generation algorithm
SOCRATES [10]. To examine the effect of Nx and N,
we attempted our method with pairs of Nx={10, 50,
100, 300, 500, 700, 1000, 1200, 1500, 2000} and Np={1,
10, 20, 50, 100, 200, 500, 1000, 1500}. When Np is
larger than Nx, such pair is neglected. We also tried
some different block sizes (4, 6, 8) used to partition a
test set. Here, we show only the case where the block
size is 8 because the results for block size 4 and 6 are
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similar to those for block size 8. The statistical coding
used is that described in Sect. 2. Note that our method
can be applicable to different statistical codings, e.g.,
comma coding [7] and selective coding [8].

In Table 3 we report the results of our method. Af-
ter the circuit name, the number of primary inputs is
shown. In the next five columns, we show the results of
test sets generated without our method, i.e., don’t-care
values of each test-pattern are specified randomly and
fault simulation is performed for every generated test-
pattern. Columns tests, comp., ratio and states denote
the number of test-patterns, the total length (bits) of
the test set encoded by Huffman coding, the ratio of
the total length of a test set after Huffman encoding to
that before, and the number of states in the finite state
machine needed to decode the encoded test sets, respec-
tively. Column time denotes the computational time
required for procedure Generate_Compressible_Test (in
Fig. 2), which consists of deterministic test generation,
fault simulation and X block specification. The next
seven columns show the results of our test generation.
The results shown in Table 3 are the smallest total
lengths of test sets compressed of all results for different
pairs of Nx and Ng. The last two columns show the
values of Nx and Ng, respectively, when the smallest
compressed test sets are derived.

The boldface values in the ninth column mean that
the total lengths of compressed test sets generated by
our method are smaller than those of the test sets gener-
ated without our method. As you can see, our method
can reduce the total length of compressed test set for
almost circuits. Especially for ¢2670, ¢5315, 9234,
$13207, s15850 and s38417, the total lengths of test sets
generated by our method can be reduced to one third
of those without our method. In addition, comparing
the numbers of states in the decoders for both methods
(shown in the sixth column and the eleventh column
in Table 3), we can see that the proposed method can

Table 3 Results of compressible test generation.
without our method with our method
circuit  inputs | tests comp. ratio states time | tests comp. ratio states time | Nx Ngp
c432 36 63 2028 0.89 162 0.08 78 1088 0.38 34 0.1 10 1
c499 41 65 2400 0.90 176 0.13 81 2115 0.63 102 0.16 10 1
c880 60 74 4238 0.95 222 0.09 107 2124 0.33 50 0.22 50 1
c1355 41 90 3327 0.90 202 1.31 134 3653 0.66 131 1.73 10 1
c1908 33 152 4798 0.95 230 0.46 194 5286 0.82 171 0.53 10 1
c2670 233 196 38495 0.84 255 1.03 199 10200 0.21 66 1.55 50 1
c3540 50 197 9649 0.97 252 1.11 273 5931 0.43 74 1.95 10 1
c5315 178 189 33570 0.99 255 3.96 283 11076 0.21 83 6.17 50 10
c6288 32 42 1126 0.83 111 2.35 130 2510 0.60 75 2.01 10 1
c7552 207 264 54357 0.99 255 50.07 420 22935 0.26 135 22.89 | 100 10
s9234 247 526 127822 0.98 255 35.67 672 33445 0.20 102 28.63 50 10
513207 700 667 452026 0.96 255 21.74 | 1084 108101 0.14 137 30.95 | 300 1
515850 611 527 317759 0.98 255 22.89 835 79154 0.15 152 30.86 10 1
$35932 1763 79 139271 0.99 255 33.76 574 129385 0.12 17 83.26 | 100 10
s38417 1664 | 1721 2644136 0.92 255 115.41 | 3868 881040 0.13 118  409.17 | 100 50
s38584 1464 824 1205819 0.99 255 322.52 | 4737 916349 0.13 94 760.5 | 100 1
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reduce the number of states in the corresponding de-
coders. This is because our method reduces the number
of unique block patterns according to Lemma 1. Note
that, as mentioned in Sect. 2, the number of states in a
decoders for a test set is equal to the number of unique
block patterns in the test set.

The computational time for the proposed method,
shown in the twelfth column in Table 3, is compara-
ble to that for the test generation without our method,
shown in the seventh column. However, for relatively
large circuits (i.e., 35932, 38417 and s38584), our
computational times become twice as large as the orig-
inal ones. This is due to ad hoc implementation of
the proposed algorithm — the first objective of this ex-
periment is to confirm the effectiveness of our method
in reducing the size of the compressed test set, and
hence the program was not efficient for the circuit size.
Therefore, we consider that if we tune up the program,
especially the sorting procedure that works for updat-
ing block pattern probability table (at lines 3 and 10
in Fig. 3), the computational time for large circuits can
be reduced.

In order to clarify the effectiveness of our method,
we show the entropy and the average length of a Huff-
man code word for the test sets in Table 4. The second
and third columns show the entropy of the test sets
generated with and without our method, respectively.
The forth column shows the ratio of the entropy with
our method to that without our method. The fifth,
sixth and seventh columns show the average length of
a Huffman code word of two test sets and its ratio. The
average length of a code word is the product of the com-
pression ratio shown in Table 3 and the block size (8 in
our experiment). The average values of every columns
appear in the last row of Table 4. From this table, we
can see that the entropy of test sets generated with our
method becomes, on average, a third as small as that
without our method. Moreover, the average length of

Table 4 Entropy and average length of Huffman code word.

entropy av. Huffman code word
circuit | w/o with ratio | w/o  with ratio

c432 712 3.04 043 | 715 3.10 0.43
c499 713  5.04 071 7.2 5.09 0.71
c880 7.61 262 034 | 7.64 2.65 0.35
c1355 718 529 074 | 7.21 5.32 0.74
c1908 7.61 657 086 | 7.65 6.61 0.86
c2670 6.7 1.56 023 | 6.74 1.76 0.26
c3540 7.8 3.46 044 | 7.84 348 0.44
c5315 796 148 019 | 7.98 1.76 0.22
c6288 6.63 4.8 0.72 6.7 4.83 0.72
c7552 793 194 024 | 796 2.11 0.27
s9234 7.84 125 016 | 7.87 1.61 0.2
s13207 | 7.71 035 0.05 | 7.75 1.14 0.15
s15850 | 7.87 0.55 0.07 | 7.89 1.24 0.16
s35932 | 799 0.13 0.02 | 8.00 1.02 0.13
s38417 | 7.36 027 0.04 | 7.39 1.10 0.15
s38584 | 7.99 0.19 0.02 | 8.00 1.06 0.13

average | 7.53 241 032 | 7.56 2.74 0.36 |
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a Huffman code word also decreases by a third. This is
because Huffman coding is an optimal statistical cod-
ing in which the average length of the code word is the
closest to the entropy of a target data source. Hence,
our method is suitable to test compression by statisti-
cal coding, especially Huffman coding. As a result, our
method can effectively reduce the entropy of test sets.

To clarify the effect of estimation parameters Nx
and Ng, in Fig. 6, we illustrate the total length of com-
pressed test set for ¢7552 according to the parameters.
As you can see, an optimal total length of compressed
test set is achieved when Nx and Ng are appropriately
small (Nx = 100 and Nr = 10). The tendency that
appropriately small Nx and Ng can produce optimal
test sets is seen in the results for other circuits, as you
can also see in Table 3. Thus, in the case where the
proposed method is used in practical, it may be able to
generate a highly compressible test set with appropri-
ately small Nx and Ng.

The total length of compressed test set is given
by the product of the compression ratio, which is the
ratio of the total length of test sets after Huffman cod-
ing to that before Huffman coding, and the number
of test-patterns. Figures 7 and 8 show the compres-
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Fig.6 Total length of compressed test sets for ¢7552.
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Table 5 Results of static compression [9].
[ circuit | comp. time[sec] |
c432 666 1.84
c499 1567 13.81
c880 1082 4.52
c1355 2579 84.4
c1908 2859 181
c2670 8011 170.8
c3540 2821 115.1
c5315 6178 188.7
c6288 307 54.58

sion ratio and the number of test-patterns generated
for ¢7552, respectively, in the same manner as Fig. 6.
From Fig.7, the compression ratio decreases with Nx
increasing, i.e., large Nx can reduce the entropy of a
test set. From Fig.8, in contrast, the number of test-
patterns increases with Ny increasing. Although these
tendencies derived from two figures were discussed in
Sect. 3.3, comparing Fig. 6 to Figs. 7 and 8, the transi-
tion of the total length of compressed test set, shown
in Fig.6, is dominated by that of the number of test-
patterns, shown in Fig. 8, rather than that of compres-
sion ratio. Thus, if a much smaller compressed test set
is desired, it is required to generate small test-patterns
in number without increasing the entropy of the test
set.

Table 5 shows the results of static compression in
[9]. The blocks size used to partition a test set is eight,
which is equal to the results of Table 3. The results for
the larger circuits than c6288 can not be obtained in our
experimental environment because of a large computa-
tional time and a shortage of working memory required.
Comparing the results of Table 5 to Table 3, although
the total lengths of test sets generated by our method
is longer than that by static compression, the computa-
tional time by our method is considerably smaller than
that by static compression. In addition, our method
can obtain the results for the circuits whose results are
not obtained by the method [9].
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5. Conclusions

This paper proposed a method for generating a test set
suitable for compression by statistical encoding. Exper-
imental results show that our method can reduce the
length of compressed test set with small extra effort.
From the analysis of the experimental results, we can
see that the estimation parameters Nx and Ng should
be appropriately small for practical use.

In order to reduce the size of a compressed test set
further, it is important to generate small test-patterns
in number. As an approach to this, we are considering
the combination of our test generation and test com-
paction, i.e., generating a small test set while reducing
its entropy. Some preliminary results show the effec-
tiveness in reducing the resultant size of compressed
test sets[11]. As a future work, we pursue this study
further.
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