
1908
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.10 OCTOBER 2000

LETTER

On Processing Order for Obtaining Implication Relations

in Static Learning

Hideyuki ICHIHARA†, Seiji KAJIHARA††, and Kozo KINOSHITA†††, Regular Members

SUMMARY Static learning is a procedure to extract impli-
cation relations of a logic circuit. In this paper we point out
that the number of the extracted implication relations by static
learning depends on the order of signal lines processed. Also, we
show four procedures for ordering signal lines processed and the
effectiveness of the ordering procedures by experiments.
key words: test generation, implication, static learning

1. Introduction

Implication relations between signal value assignments
in a logic circuit play an important role in the field
of VLSI CAD. Implication relations are extracted from
the netlist and can be used for various purposes. In
test generation, static learning that has been proposed
in SOCRATES [1], is known as one of such applications.
Since the use of more implication relations can assign
more logic values uniquely, signal lines whose values
have not been assigned yet can be reduced. Thus the
number of backtracks, which is strongly related to the
run time of test generation, decreases. As other applica-
tions, there exist logic optimization, logic verification,
and untestable-path analysis. Implication relations give
information on redundancy in logic optimization [2], [3],
and are used to check logic tautology in logic verifica-
tion [4]. Also, they assist to find more necessary assign-
ments for sensitizing a path in untestable-path analy-
sis [5].

Static learning assigns values to lines by an impli-
cation procedure and obtains implication relations from
the set of the value assignments by contrapositive oper-
ation. The implication procedure is done for each line
in an order of lines. This processing order sometimes
affects the number of implication relations obtained,
while an example is given later. To obtain more im-
plication relations, therefore, it is necessary to consider
the better ordering method for processing. However,
there are no studies which examine the effectiveness of
the order of signal lines processed in static learning.

In this paper, we propose four ordering procedures

Manuscript received April 21, 2000.
†The author is with the Dept. of Information Sciences,

Hiroshima City Univ., Hiroshima-shi, 731–3194 Japan.
††The author is with the Computer Science and Elec-

tronics Dept., Kyushu Institute of Technology, Iizuka-shi,
820–0053 Japan.

†††The author is with the Faculty of Informatics, Osaka
Gakuin University, Suita-shi, 564–8511 Japan.

which are based on the level of lines, and show experi-
mental results to find out the better ordering procedure
that can extract more implication relations.

The remainder of this paper is organized as fol-
lows. In Sect. 2, we explain static learning. In Sect. 3,
we discuss the relationship between the order of pro-
cessed lines and the number of implication relations.
In Sect. 4, we propose four procedures to produce the
order of processed lines, and show the some experimen-
tal results for static learning with these ordering pro-
cedures in Sect. 5. This paper is concluded in Sect. 6.

2. Static Learning

This paper deals with multi-level combinational cir-
cuits. One of three values 0, 1, X (don’t-care or unde-
fined) is assigned to each signal line. Value assignment
is to assign logic value vs ∈ {0, 1} to signal line s and
denoted by s = vs. If value assignment a = va uniquely
determines value assignment b = vb(va, vb ∈ {0, 1}),
this relation between two value assignments is called
implication relation and denoted by a = va → b = vb.

Implication procedure is to assign values that are
uniquely determined from a given value assignment.
Basically, the implication procedure repeats direct im-
plication operation.
Definition(Direct Implication Operation): Direct
implication operation is defined as assigning signal val-
ues as follows, when value assignment a = va is given.

1. In the case where line a is the output (an input)
of gate Ga, assign all values on every input (the
output and other inputs) which are uniquely de-
termined by a = va according to the truth table of
gate Ga.

2. In the case where line a is the stem (a branch) of
fanout F , assign va to all branches (the stem and
the other branches) of F .

The implication procedure uses a set of implication
relations that are extracted by static learning, in order
to assign more values. In this paper, we call a set of
implication relations extracted implication dictionary.
Figure 1 shows the implication procedure starting from
a value assignment a = va, where DIC is an impli-
cation dictionary. The algorithm decides value assign-
ments by direct implication operation (line 10) and by
looking implication dictionary up (lines 11-12) until no



LETTER
1909

1 implication procedure(a = va)

2 {
3 V : a stack of value assignments;
4 Set V = φ;
5 Push a = va into V ;

6 while (V is not empty) {
7 Pop a value assignment b = vb from V ;
8 if(b = vb has been assigned) return FAILURE;
9 Assign b = vb;
10 Push value assignments obtained by direct implica-

tion operation for b = vb into V ;

11 for (each implication relation in DIC such that b =

vb → c = vc)

12 Push c = vc into V ;

13 }
14 return SUCCESS;

15 }
Fig. 1 Algorithm of implication procedure.

1 static learning()

2 {
3 DIC: an implication dictionary;
4 V : a set of signal value assignments;
5 Set DIC = φ and V = φ;

6 for (each line i) {
7 for (each value vi ∈ {0, 1}){
8 Set signal assignments obtained by implica-

tion procedure(i = vi) to V ;

9 for(each i = vi → j = vj ∈ V )

10 if (i = vi → j = vj satisfies the learning crite-

rion)

11 add j = vj → i = vi to DIC (Contrapositive
operation for i = vi → j = vj) ;

12 }
13 }
14 }

Fig. 2 Algorithm of static learning.

new value are assigned.
DIC is constructed in static learning, which is

based on the implication procedure and contrapositive
operation, which is the operation to obtain implication
relation b = vb → a = va from a = va → b = vb.

Figure 2 shows the algorithm of static learning.
The algorithm repeats processes from line 8 to line 11
according to a line order at line 6. The implication
procedure is called at line 8. Implication relations ob-
tained are checked by the learning criterion (line 10) so
as to find implication relations not generated by only
repeating direct implication operation. We call the or-
der of lines selected at line 6 processing order, and call
a given value assignment for the implication procedure,
i.e. i = vi in Fig. 2, start assignment.

An example that implication relation f = 1 → c =
1 is obtained by static learning is shown by using the

Fig. 3 Example circuit.

circuit of Fig. 3. Consider that implication dictionary
DIC is empty initially and line c is selected as value i at
line 6 in Fig. 2. At line 8, implication procedure(c = 0)
assigns d = 0, e = 0, f = 0 and g = 1. Then at line
10, since c = 0 → f = 0 satisfies the learning criterion,
implication relation f = 1 → c = 1 is obtained by
contrapositive operation at line 11.

3. The Processing Order and Implication Re-
lation

In static learning, an implication dictionary, which is
constructed at line 11 of Fig. 2, is used for the implica-
tion procedure at line 11 of Fig. 1. The processing order
affects the construction of the implication dictionary.
As a result, there exist implication relations which can
be found in a processing order, but not found in another
processing order. We give an example below.

Suppose two processing orders for the circuit of
Fig. 3: processing order A is that f appears before
c and processing order B is that f appears after c.
The results for two processing orders are shown in
Table 1. In case of processing order A, the implica-
tion procedure(f = 1) does not derive any implication
relation. Only implication relation f = 1 → c = 1 is
found by contrapositive operation from c = 0 → f = 0,
which is obtained by the implication procedure(c = 0).
In case of processing order B, implication relation f =
1 → c = 1 is first found by contrapositive operation af-
ter the implication procedure(c = 0). Therefore impli-
cation procedure(f = 1) can produce f = 1 → g = 0.
As a result, implication relation g = 1 → f = 0 is
obtained by contrapositive operation from implication
relation f = 1 → g = 0. Thus, processing order B can
find more implication relations than processing order
A.

The relationship between start assignments and
implication relations extracted by static learning can
be described as a directed acyclic graph. Figure 4 illus-
trates the relationship between start assignments and
implication relations in the circuit of Fig. 3. The left-
most vertices show the start assignments and the other
vertices show implication relations obtained by static
learning. A directed edge from a start assignment to
an implication relation means that the implication re-
lation is extracted from the start assignment. A di-
rected edge between two implication relations means
that the pointed implication relation is extracted us-



1910
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.10 OCTOBER 2000

Table 1 Example of processing order.

start obtained
assignment implication relation

Processing 1. f = 1 None
Order A 2. c = 0 f = 1 → c = 1
Processing 1. c = 0 f = 1 → c = 1
Order B 2. f = 1 g = 1 → f = 0

Fig. 4 Relationship between implication relations and start
assignments.

ing the pointing implication relation. For example,
implication relation I4 : g = 1 → f = 0 is obtained
from start assignment f = 1 using implication relation
I1 : f = 1 → c = 1.

Implication relations are classified into two types:
one is extracted without using other implication rela-
tions such as I1, I2, I3 in Fig. 4. The others are ex-
tracted using other implication relations such as I4, I5.
Although the former type of implication relations is ex-
tracted regardless of the processing orders, the latter
type of implication relations may not be extracted in
some processing orders. In this example, it is desirable
that processing order contains sequence c-d-e-f -g.

4. Ordering Procedures

Here, we consider line ordering procedures introduced
into static learning. Since the number of line orders for
a circuit is n! where n is the number of lines, it will
be difficult to find the best order for a given circuit.
In this section, we introduce four basic ordering proce-
dures to verify the influence of processing orders. They
are based on the level of line.
Definition(Level of Line): The level of line a is de-
fined as the maximum number of multi-input-gates on
paths from primary inputs to a and denoted by La .

Four ordering procedures are Forward with
Breadth-first (FB), Backward with Breadth-first (BB),
Forward with Depth-first (FD) and Backward with
Depth-first (BD) ordering procedures. Forward means
that lines are numbered from inputs to outputs, while
backward means that lines are from outputs to inputs.
Breadth-first and Depth-first mean giving priority to
select lines with same and different levels, respectively.
Since these procedures are known as basic searching al-
gorithms, they are suitable to verify the influence of

1 [FB/BB]()

2 {
3 Porder : a sequence of lines;
4 Set Porder = φ;

5 for (each k from [0/max level] to [max level/0])

6 Concatenate sequence of lines {a|La = k, a; line} to
Porder;

7 return Porder;

8 }
Fig. 5 Ordering procedure FB/BB. (The left word in the
bracket [] is for FB and the right for BB.)

1 [FD/BD]()

2 {
3 Porder : a sequence of lines;
4 S : a set of lines;
5 Set Porder = φ;

6 for (each primary [input/output] p) {
7 Set lines in transitive fanout of p to S;

8 for (each k from [0/max level] to [max level/0])

9 Concatenate sequence of lines {a|La = k, a ∈ S}
to Porder;

10 }
11 return Porder;

12 }
Fig. 6 Ordering procedure FD/BD. (The left word in the
bracket [] is for FD and the right for BD.)

processing orders.
We give FB and BB in Fig. 5 and FD and FB in

Fig. 6. The max level means the maximum level of the
circuit.

For the circuit of Fig. 3, the level of line is shown
in parentheses. Each ordering procedure provides the
following processing order.

FB: a-b-c-d-e-f -g
BB: g-f -d-e-a-b-c
FD: a-d-f -g-b-e-c
BD: f -d-a-e-b-c-g

5. Experimental Results

We implemented static learning with the proposed or-
dering procedures in C language and applied them to
ISCAS’85 benchmark circuits and combinational parts
of ISCAS’89 benchmark circuits on a PC (CPU: Pen-
tium Pro 150 MHz, MEMORY: 128 M, OS: FreeBSD).

Table 2 shows the result of static learning with
each ordering procedure. The column “the number of
implication relations” shows the number of implication
relations obtained by each ordering procedure. The col-
umn “max” shows the number of implication relations
obtained by the procedure iterating static learning un-
til no new implication relation is obtained. The col-
umn “the ratio to #max” is the ratio of the number



LETTER
1911

Table 2 Number of implication relations obtained by static learning with four ordering
procedures.

circuit the number of implication relations the ratio to #max
name FB BB FD BD max FB BB FD BD max
c432 66 57 57 57 66 1.00 0.86 0.86 0.86 1.00
c499 40 40 40 40 40 1.00 1.00 1.00 1.00 1.00
c880 85 85 85 85 85 1.00 1.00 1.00 1.00 1.00
c1355 208 208 208 208 208 1.00 1.00 1.00 1.00 1.00
c1908 1021 517 648 609 1024 1.00 0.50 0.63 0.59 1.00
c2670 1171 843 908 905 1174 1.00 0.72 0.77 0.77 1.00
c3540 4687 4063 4157 4466 4714 0.99 0.86 0.88 0.95 1.00
c5315 2928 1429 1458 2025 2933 1.00 0.49 0.50 0.69 1.00
c6288 1027 663 678 1072 1081 0.95 0.61 0.63 0.99 1.00
c7552 9341 3633 4112 5475 9753 0.96 0.37 0.42 0.56 1.00
s9234 28596 19639 20964 26765 29593 0.97 0.66 0.71 0.90 1.00
s13207 100844 73470 74934 100520 102793 0.98 0.71 0.73 0.98 1.00
s15850 39901 24909 34943 40091 41854 0.95 0.60 0.83 0.96 1.00
s35932 2811 2811 2811 2811 2811 1.00 1.00 1.00 1.00 1.00
s38417 20247 18618 18833 19753 20321 1.00 0.92 0.93 0.97 1.00
s38584 252420 239100 240397 249227 253374 1.00 0.94 0.95 0.98 1.00

Table 3 Number of iterations of static learning.

circuit # of iterations one pass
name FB BB FD BD time [sec.]
c432 1 2 2 2 0.06
c499 1 1 1 1 0.17
c880 1 2 1 1 0.16
c1355 1 1 1 1 1.19
c1908 2 7 6 4 1.24
c2670 2 7 5 6 1.43
c3540 2 4 4 3 6.92
c5315 1 6 6 4 3.97
c6288 2 2 2 2 3.19
c7552 2 10 9 6 10.94
s9234 2 4 4 3 31.83
s13207 2 2 3 2 220.60
s15850 2 3 3 2 67.25
s35932 1 1 1 1 414.26
s38417 2 3 3 2 260.38
s38584 2 4 4 3 1182.00

average 1.62 3.68 3.43 2.68 147.04

of implication relations obtained by each ordering pro-
cedure to “max”, respectively. This result shows that
the processing order affects significantly the number of
implication relations to be found. For c1908, c5315 and
c7552 the number of implication relations obtained by
BB is no more than the half of FB. Moreover the num-
ber of implication relations found by FB is comparable
to the maximum for many circuits. Therefore FB is the
best ordering procedure among four for these circuits.

Table 3 shows results of iterating static learning.
The each column of “# of iterations” shows the number
of iterations of static learning required to obtain max-
imum implication relations, which are shown in “max”
of Table 2, in each processing order. The column “one

pass time” means the run time of static learning with
FB. FB requires fewer iterations than others. Espe-
cially, the number of iterations required for FB is less
than 2.

6. Conclusion

In this paper we discussed the importance of the line
processing order in static learning. In the experi-
ment for benchmark circuits, we showed that the or-
dering procedure FB, which is based on a Forward with
Breadth-first manner, can derive almost all implication
relations of the circuits.

References

[1] M.H. Schulz, E. Trischler, and T.M. Sarfert, “SOCRATES:
A highly efficient automatic test pattern generation sys-
tem,” IEEE Trans. Comput.-Aided Des. Integrated. Circuits
& Syst., vol.7, no.1, pp.126–137, 1988.

[2] W. Kunz and P.R. Menon, “Multi-level logic optimization
by implication analysis,” Proc. Int’l Conf. on CAD, pp.6–13,
1994.

[3] H. Ichihara and K. Kinoshita, “On acceleration of logic cir-
cuits optimization using implication relations,” Proc. 6th
ATS, pp.222–227, 1997.

[4] W. Kunz, “HANNIBAL: An efficient tool for logic verifica-
tion based on recursive learning,” Proc. Int’l Conf. on CAD,
pp.538–543, 1993.

[5] S. Kajihara, K. Kinoshita, I. Pomeranz, and S.M. Reddy,
“A method for identifying robust dependent and functionally
unsensitizable paths,” Proc. 10th IEEE Int’l Conf. on VLSI
Design, pp.82–87, 1997.

[6] H. Ichihara, S. Kajihara, and K. Kinoshita, “An efficient pro-
cedure for obtaining implication relations and its application
to redundancy identification,” The Seventh Asian Test Sym-
posium, pp.58–63, 1998.


